scholarly journals Towards a hydrogen economy – a sustainable pathway for global energy transition

2021 ◽  
Vol 28 (2) ◽  
pp. 102-107
Author(s):  
Jeffrey Kwok

Hydrogen is receiving increasing attention for achieving carbon abatement in various sectors, including transport, logistics, thermal engineering and industrial feedstock, etc. Hydrogen can also support distributed power supply that raises national energy security. Both commercial and industrial sectors share a common vision that increasing the cost-effectiveness of renewable hydrogen represents their strategic achievement towards substantial sustainability. This paper explains how hydrogen can play seven roles in the energy transition which include large-scale integration of renewable energy into the power grid, medium for storing and distributing energy across sectors and/or regions, a buffer to increase the electric system resilience and clean fuel for fuel cell vehicles to decarbonise transport. Besides, hydrogen can decarbonise building energy consumption and serve as feedstock using captured carbon. Power Assets Holdings Limited (PAH), a global investor in energy and utility-related business, has identified a hydrogen economy as a strategic vision in its business plan for zero carbon readiness in 2035 and a carbon-free business model in 2050. In this paper, the features and attributes of different hydrogen projects, such as H21 and InTEGRel in the UK and Hydrogen Park in South Australia, are discussed to demonstrate the commercial deployment of hydrogen power.

2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


2019 ◽  
Vol 89 (10) ◽  
pp. 1055-1073 ◽  
Author(s):  
Nicolaas Molenaar ◽  
Marita Felder

ABSTRACT Dolomite is a common and volumetrically important mineral in many siliciclastic sandstones, including Permian Rotliegend sandstones (the Slochteren Formation). These sandstones form extensive gas reservoirs in the Southern Permian Basin in the Netherlands, Germany, Poland, and the UK. The reservoir quality of these sandstones is negatively influenced by the content and distribution of dolomite. The origin and the stratigraphic distribution of the dolomite is not yet fully understood. The aim of this study is to identify the origin of carbonate. The main methods used to achieve those aims are a combination of thin-section petrography, scanning electron microscopy (SEM and EDX), and XRD analyses. The present study shows that the typical dispersed occurrence of the dolomite is a consequence of dispersed detrital carbonate grains that served both as nuclei and source for authigenic dolomite cement. The dolomite cement formed syntaxial outgrowths and overgrowths around detrital carbonate grains. The study also shows that dolomite cement, often in combination with ankerite and siderite, precipitated during burial after mechanical compaction. Most of the carbonate grains consisted of dolomite before deposition. The carbonate grains were affected by compaction and pressure dissolution, and commonly have no well-defined outlines anymore. The distribution of dolomite cement in the Rotliegend sandstones was controlled by the presence of stable carbonate grains. Due to the restricted and variable content of carbonate grains and their dispersed occurrence, the cement is also dispersed and the degree of cementation heterogeneous. Our findings have important implications on diagenesis modeling. The presence of detrital carbonate excludes the need for external supply by any large-scale advective flow of diagenetic fluids. By knowing that the carbonate source is local and related to detrital grains instead of being externally derived from an unknown source, the presence of carbonate cement can be linked to a paleogeographic and sedimentological model.


2021 ◽  
Vol 288 ◽  
pp. 125519
Author(s):  
Carole Brunet ◽  
Oumarou Savadogo ◽  
Pierre Baptiste ◽  
Michel A. Bouchard ◽  
Céline Cholez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document