scholarly journals Toxic metal analysis of external and internal compositions and lixiviation pattern of costume jewelry

2021 ◽  
Vol 10 (11) ◽  
pp. e291101119750
Author(s):  
Mateus de Aguiar Montenegro ◽  
Romulo Coriolano Dutra ◽  
Guilherme Bandeira Candido Martins

Costume jewelry may expose skin to toxic metals due to sweat and friction, causing intoxications. An investigation was conducted over costume jewelry rings to study its behavior and verify its safety throughout their use, regarding toxic metal contamination. Qualitative and quantitative elemental analysis of the internal and external layers of the ring samples (costume jewelry) were made through X-Ray Fluorescence Spectrometry (XRF) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The ring samples were also immerged in a synthetic sweat solution for 30 days. The lixiviated solution and post treated surfaces were analyzed by ICP-OES and Search Electron Microscopy (SEM), respectively.  Metals such as Cu, Cd, Cr and Ni were identified in the surface composition, as well in the composition of the digested samples. The synthetic sweat eroded the rings surfaces, and metals such as Cd and Mn were lixiviated by it. The results indicate the presence and lixiviation of harmful metals that may cause health and environmental problems.

Author(s):  
Masoud Aghahoseini ◽  
Gholamhassan Azimi ◽  
M. K. Amini

Determination of traces of Cd, Co, Cu, Mn and Pb elements in zirconium and its alloys by inductively coupled plasma optical emission spectrometry (ICP OES) suffers from severe spectral interferences...


2014 ◽  
Vol 97 (3) ◽  
pp. 687-699 ◽  
Author(s):  
James M Bartos ◽  
Barton L Boggs ◽  
J Harold Falls ◽  
Sanford A Siegel

Abstract A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP- OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7 to 22.7% P) and 3 to 62% K2O (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate–disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.


Sign in / Sign up

Export Citation Format

Share Document