scholarly journals Differing virulence of Aphanomyces astaci isolates and elevated resistance of noble crayfish Astacus astacus against crayfish plague

2012 ◽  
Vol 102 (2) ◽  
pp. 129-136 ◽  
Author(s):  
J Makkonen ◽  
J Jussila ◽  
R Kortet ◽  
A Vainikka ◽  
H Kokko
2020 ◽  
Vol 25 (1) ◽  
pp. 39-46
Author(s):  
Japo Jussila ◽  
Lennart Edsman

Abstract The spreading of the alien signal crayfish (Pacifastacus leniusculus) is posing an ongoing threat to native European crayfish species in Fennoscandia, like the native noble crayfish (Astacus astacus). The signal crayfish is commonly a chronic carrier of the crayfish plague (Aphanomyces astaci), thus, in addition to being more competitive than noble crayfish, it also has a competitive advantage in this disease over the noble crayfish. The challenges rising from the introduction of the alien signal crayfish to Sweden, Finland and finally also Norway, are similar in nature. The licensed and unlicensed spreading of this species also has a similar history in these countries. In this paper we describe some of the patters of the spread of alien signal crayfish and highlight the detrimental nature of an alien crayfish, accompanied by a highly virulent disease, to native Fennoscandian crayfish and also to native Fennoscandian ecosystems. A halt to the further spreading of alien signal crayfish in Fennoscandia is the only means to ensure successful conservation outcomes for the noble crayfish.


2013 ◽  
Vol 103 (3) ◽  
pp. 199-208 ◽  
Author(s):  
S Viljamaa-Dirks ◽  
S Heinikainen ◽  
H Torssonen ◽  
M Pursiainen ◽  
J Mattila ◽  
...  

Aquaculture ◽  
2011 ◽  
Vol 321 (1-2) ◽  
pp. 17-20 ◽  
Author(s):  
J. Jussila ◽  
J. Makkonen ◽  
A. Vainikka ◽  
R. Kortet ◽  
H. Kokko

2015 ◽  
Vol 132 ◽  
pp. 115-124 ◽  
Author(s):  
Thomas Becking ◽  
Agata Mrugała ◽  
Carine Delaunay ◽  
Jiří Svoboda ◽  
Maryline Raimond ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
David Strand ◽  
Stein Johnsen ◽  
Frode Fossøy ◽  
Johannes Rusch ◽  
Brett Sandercock ◽  
...  

During the past decade, environmental DNA (eDNA) methodology has become an important non-invasive tool to monitor aquatic micro- and macro-organisms, including freshwater crayfish. In Europe, noble crayfish Astacus astacus is the most widespread native freshwater crayfish. However, the species is threatened in its entire distribution range. It is therefore included on the International Union for Conservation Nature (IUCN) red list, and on several national red lists. Reliable monitoring is essential for implementation of conservation measures. For crayfish, traditional population trends have been obtained from catch per unit effort (CPUE) data. In order to successfully apply and use eDNA monitoring for noble crayfish, or any species, it is a prerequisite to know the strengths and weaknesses of the applied methods and how they perform compared to traditional methodology. Sampling strategy and analysis methodology also depends on choice of species to be monitored, and which questions to be answered. Further, refinement of the employed methods may improve the detection probability for eDNA monitoring. Here we report the results from 1) a recently published study on noble crayfish eDNA monitoring (Johnsen et al. 2020) and 2) an ongoing study comparing and optimising the methods used for monitoring noble crayfish. 1) We compared eDNA monitoring (transects with ten 5L samples) with traditional trapping (transects with 50 traps) for noble crayfish in lentic habitats, in order to evaluate detection probability and if eDNA concentration correlates with relative density of crayfish. We also compared two commonly used analytical methods [quantitative real-time PCR (qPCR) and droplet digital PCR (ddPCR)] for eDNA monitoring. We found that qPCR outperformed ddPCR in detection frequency (Fig. 1), most likely due to some inhibition in the ddPCR analysis. eDNA monitoring provided reliable presence/absence data for noble crayfish, even in lakes with very low crayfish densities. Detection frequency increased with increasing CPUE (Fig. 1). However, we did not observe any correlation between relative crayfish densities and eDNA concentrations of crayfish. eDNA concentrations were consistently very low, even in lakes with very high crayfish densities. For lakes with very low crayfish densities, we estimated that ~5 samples (5L samples) are needed for 95 % detection likelihood, while for lakes with high densities 2 samples were needed. 2) We compared two eDNA sampling strategies (sampling from bottom or the surface), commonly used for crayfish or fish in Norway to investigate how both strategies perform. The sampled filters were divided and two DNA extraction protocols were evaluated (CTAB based vs Column based). We found that the DNA yield was higher from the column based DNA extraction protocol, and that eDNA concentrations from fish (brown trout Salmon trutta, northern pike Esox lucius and European perch Perca fluviatilis) were significantly higher than for crayfish. For crayfish and brown trout, there was little difference between detection probability for bottom and surface samples, while for northern pike and European perch the detection probability was higher for the bottom samples. Currently, we are analysing eDNA samples collected with glass fibre filters and NatureMetrix filters for noble crayfish in both lentic and lotic habitats and the preliminary results will be presented. We conclude that eDNA monitoring cannot substitute CPUE monitoring for freshwater crayfish, but it offers reliable presence-absence data, provided sufficient sampling efforts. Thus, it is suitable for large scale monitoring of threatened crayfish and combined with eDNA analysis of alien crayfish and diseases such as crayfish plague, this is a cost-efficient supplement offering a more holistic approach for aquatic environments and native crayfish conservation. Furthermore, the synergy effect of using collected eDNA samples from different projects to monitor additional species is substantial.


2016 ◽  
Vol 196 (2) ◽  
pp. 206-222 ◽  
Author(s):  
Gilles Luquet ◽  
Murielle Salomé ◽  
Andreas Ziegler ◽  
Céline Paris ◽  
Aline Percot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document