scholarly journals Warming and acidification promote cyanobacterial dominance in turf algal assemblages

2014 ◽  
Vol 517 ◽  
pp. 271-284 ◽  
Author(s):  
D Bender ◽  
G Diaz-Pulido ◽  
S Dove
2019 ◽  
Vol 116 (30) ◽  
pp. 15080-15085 ◽  
Author(s):  
Katharine R. Hind ◽  
Samuel Starko ◽  
Jenn M. Burt ◽  
Matthew A. Lemay ◽  
Anne K. Salomon ◽  
...  

Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world’s ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or “barrens”), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species’ identities.


2016 ◽  
Vol 38 (4) ◽  
pp. 818-829 ◽  
Author(s):  
Juan F. Saad ◽  
Fernando Unrein ◽  
Paula M. Tribelli ◽  
Nancy López ◽  
Irina Izaguirre

Extremophiles ◽  
2021 ◽  
Author(s):  
Paulo E. A. S. Câmara ◽  
Pedro V. Eisenlohr ◽  
Lívia C. Coelho ◽  
Micheline Carvalho-Silva ◽  
Eduardo T. Amorim ◽  
...  

2021 ◽  
Vol 584 ◽  
pp. 110673
Author(s):  
Yinqiang Li ◽  
Kefu Yu ◽  
Lizeng Bian ◽  
Yeman Qin ◽  
Weihua Liao ◽  
...  

2017 ◽  
Vol 32 (1) ◽  
pp. 11
Author(s):  
IVONNE LUNA ORTEGA ◽  
VICENCIO DE LA CRUZ FRANCISCO

Las macroalgas son abundantes en el arrecife Oro Verde, Veracruz pero, hasta ahora, se desconocía su riqueza taxonómica, y se presume que presentan asentamientos en los corales escleractinios hermatípicos. Por ello el presente trabajo investigó qué especies de corales presentaron colonizaciones algales; además, se determinó la composición taxonómica y la similitud de los ensambles de macroalgas entre las especies de corales escleractinios. Se establecieron diez puntos de muestreo de manera sistemática en el arrecife; en cada lugar de estudio se colocó un transecto de banda de 50 x 2 m para localizar y recolectar macroalgas en superficies muertas de corales escleractinios. La frecuencia de aparición de las algas se estimó con base en el total de corales estudiados, así como para cada especie coral. Para explicar similitudes y diferencias significativas de la composición de ensamblajes macroalgales entre especies de corales se aplicaron análisis de similitud y ordenación. Los corales escleractinios con ensambles de algas fueron Siderastrea siderea, Montastraea cavernosa, Pseudodiploria strigosa, Colpophylia natans, Stephanocoenia intersepta, Porites astreoides, Orbicella annularis, Orbicella faveolata. De un total de 100 colonias coralinas revisadas se determinaron 32 especies de macroalgas, las cuales están representadas en tres divisiones, 10 órdenes y 15 familias. Las macroalgas corticadas, foliosas corticadas y filamentosas fueron las más representadas en especies. Las algas de mayor frecuencia sobre los corales masivos fueron Laurencia obtusa, Amphiroa rigida y Caulerpa chemnitzia. Los corales masivos con mayor número de registros de algas fueron S. siderea (9 especies), M. cavernosa (19) y P. strigosa (17). Los ensambles algales en los corales masivos presentaron baja similitud, sin embargo no se detectaron grupos significativamente disimiles. Solamente S. siderea y M. cavernosa son ligeramente parecidos en la composición ficológica. Los resultados sugieren que los corales masivos del arrecife Oro Verde son vulnerables a la colonización de algas, pero es necesario indagar qué condiciones preceden al asentamiento algal.Macroalgal assemblages on dead surfaces of scleractinian corals (Anthozoa: Scleractinia) in the Oro Verde reef, Veracruz, MexicoBenthic macroalgae are abundant in the Oro Verde reef but their taxonomic richness was hitherto unknown and it is presumed to present settlements on the massive corals. For this reason, the present work investigated which species of massive corals show algal colonization. Also, their taxonomic composition was determined, and the similarity of the algal assemblages between species of scleractinian corals was measured. Ten sampling points were systematically established in the reef, where a transect band of 50 x 2 m at each site was placed to locate and collect algae fron the dead surfaces of scleractinian corals. The frequency of occurrence of algae species was estimated based on the total number of coral species studied, as well as on each coral species. Similarity and ordination analysis were applied in order to explain similarities and significant differences of the phycological composition among the coral species. Scleractinian corals with algal assemblages were: Siderastrea siderea, Montastraea cavernosa, Pseudodiploria strigosa, Colpophylia natans, Stephanocoenia intersepta, Porites astreoides, Orbicella annularis, Orbicella faveolata. Thirty-two species of algae were identified from a total of 100 revised coral colonies which are represented in 3 divisions, 10 orders and 15 families. The corticated, foliose corticated and filamentous macroalgae were the most represented species. The most frequent algae on massive corals were Laurencia obtusa, Amphiroa rigida and Caulerpa chemnitzia. Massive corals with higher algal records were S. siderea (9 species), M. cavernosa (19 species) and P. strigosa (17 species). The algal assemblages on the massive corals presented low similarity. However, no significant dissimilar groups were detected. Only S. siderea and M. cavernosa are relatively similar in phycological composition. The results suggest that the massive corals of the Oro Verde reef are vulnerable to the colonization of algae, but it is necessary to investigate the conditions preceding algal settlement.


2016 ◽  
Vol 43 (1) ◽  
pp. 13-26
Author(s):  
Dorota Richter ◽  
Paulina Bączek

Abstract The subject of this study is to analyse changes in the taxonomic structure and development intensity of phytoplankton and, thus, to determine the diversity of cyanobacteria and algae along with the trophy state of two oxbow lakes in the Wrocław area (south-western Poland). The analysis of samples and data from previous years showed a total of 244 cyanobacteria and algae species within these two lakes. The species composition changed significantly in both of them – there were found 90 species new to the studied flora (37% of current flora) and 74 species which were previously recorded. The diversity of cyanobacteria and algae reflects the conditions in these water bodies and each change in ecological conditions (e.g., anthropological dangers) is reflected by a change in the phytoplankton assemblage structure. Consequently, knowledge of taxonomic diversity is useful in monitoring water bodies to preserve them in good conditions. Both studied oxbow lakes belong to eutrophic ecosystems as evidenced by their phycoflora, which is rich in species characteristic of high-trophy water, and recorded water blooms. The analysis of changes in cyanobacterial and algal assemblages in these lakes was also a basis for determining their trophy and finding it to be progressively eutrophic. Regular phycological studies of Wrocław numerous water bodies are essential and, in the future, will allow us to protect them and to react quickly in case of danger to these ecosystems. It will also allow us to study eutrophication processes in the water bodies that are crucial to the city.


2017 ◽  
Vol 62 (3) ◽  
pp. 507-518 ◽  
Author(s):  
Nicola L. Ings ◽  
Jonathan Grey ◽  
Lydia King ◽  
Suzanne McGowan ◽  
Alan G. Hildrew

2019 ◽  
Vol 286 (1913) ◽  
pp. 20191857 ◽  
Author(s):  
Anita Narwani ◽  
Marta Reyes ◽  
Aaron Louis Pereira ◽  
Hannele Penson ◽  
Stuart R. Dennis ◽  
...  

A major challenge in ecology is to understand determinants of ecosystem functioning and stability in the face of disturbance. Some important species can strongly shape community structure and ecosystem functioning, but their impacts and interactions on ecosystem-level responses to disturbance are less well known. Shallow ponds provide a model system in which to study the effects of such species because some taxa mitigate transitions between alternative ecosystem states caused by eutrophication. We performed pond experiments to test how two foundation species (a macrophyte and a mussel) affected the biomass of planktonic primary producers and its stability in response to nutrient additions. Individually, each species reduced phytoplankton biomass and tended to increase rates of recovery from disturbance, but together the species reversed these effects, particularly with larger nutrient additions. This reversal was mediated by high cyanobacterial dominance of the community and a resulting loss of trait evenness. Effects of the foundation species on primary producer biomass were associated with effects on other ecosystem properties, including turbidity and dissolved oxygen. Our work highlights the important role of foundation species and their interactive effects in determining responses of ecosystem functioning to disturbance.


2011 ◽  
Vol 71 (3) ◽  
pp. 587-600 ◽  
Author(s):  
M. Teixeira de Oliveira ◽  
O. Rocha ◽  
AC. Peret

The limnological features and the phytoplankton community of the Cachoeira Dourada reservoir were analyzed in December 2006, May 2007 and November 2007. Temporal changes in the taxonomic composition, density, diversity and dominance of species were analyzed in relation to climatic factors and the physical and chemical characteristics of the water. A positive correlation was found between some of the physical and chemical variables and the phytoplankton community. According to the CCA, variables such as the extent of the euphotic zone, temperature, pH, nitrogen and phosphorus concentrations directly affected the phytoplankton dynamics. Organisms belonging to the class Cyanophyceae were the most representative in all the sampling periods, comprising the functional groups K, S1, M and H. Hydrodynamics and seasonal fluctuations of environmental factors were the driving forces determining the composition and abundance of the algal assemblages. Despite the prevalence of Cyanobacteria, the reservoir is still oligotrophic. The absence of blooms and the relatively low population abundances indicated that the quality of the reservoir's water still lies within the limits required for its multiples uses.


Sign in / Sign up

Export Citation Format

Share Document