Eastern oysters use predation risk cues in larval settlement decisions and juvenile inducible morphological defenses

2019 ◽  
Vol 621 ◽  
pp. 83-94
Author(s):  
JL Pruett ◽  
MJ Weissburg
1995 ◽  
Vol 73 (12) ◽  
pp. 2209-2215 ◽  
Author(s):  
Mark V. Abrahams

Prey species have two fundamental strategies for reducing their probability of being killed by a predator: behavioural modification and morphological defenses. It is hypothesized that prey species which possess morphological defenses should exhibit less behavioural modification in response to predation risk than species lacking such defenses. Experiments were conducted to examine behavioural modification by armoured (brook sticklebacks, Culea inconstans) and unarmoured (fathead minnows, Pimephales promelas) prey species foraging in the presence of a predator (yellow perch, Perca flavescens). Two experiments measured habitat avoidance and reactive distance to an approaching predator. The results of these experiments were consistent with the hypothesis. Compared with fathead minnows, brook sticklebacks exhibited relatively little behavioural modification in response to the presence of a predator, both in terms of avoiding dangerous areas and in their reactive distance to an approaching predator. Sticklebacks, however, graded their reactive distance to an approaching predator in relation to both their body size and group size. These data suggest that the morphology of brook sticklebacks and their behavioural sensitivity to predation risk may allow them to efficiently exploit habitats that contain predators.


2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Predation of offspring is the main cause of reproductive failure in many species, and the mere fear of offspring predation shapes reproductive strategies. Yet, natural predation risk is ubiquitously variable and can be unpredictable. Consequently, the perceived prospect of predation early in a reproductive cycle may not reflect the actual risk to ensuing offspring. An increased variance in investment across offspring has been linked to breeding in unpredictable environments in several taxa, but has so far been overlooked as a maternal response to temporal variation in predation risk. Here, we experimentally increased the perceived risk of nest predation prior to egg-laying in seven bird species. Species with prolonged parent-offspring associations increased their intra-brood variation in egg, and subsequently offspring, size. High risk to offspring early in a reproductive cycle can favour a risk-spreading strategy particularly in species with the greatest opportunity to even out offspring quality after fledging.


Sign in / Sign up

Export Citation Format

Share Document