scholarly journals Acetaldehyde at Clinically Relevant Concentrations Inhibits Inward Rectifier Potassium Current IK1 in Rat Ventricular Myocytes

2015 ◽  
pp. 939-943 ◽  
Author(s):  
M. BÉBAROVÁ ◽  
P. MATEJOVIČ ◽  
M. ŠIMURDOVÁ ◽  
J. ŠIMURDA

Considering the effects of alcohol on cardiac electrical behavior as well as the important role of the inward rectifier potassium current IK1 in arrhythmogenesis, this study was aimed at the effect of acetaldehyde, the primary metabolite of ethanol, on IK1 in rat ventricular myocytes. Acetaldehyde induced a reversible inhibition of IK1 with IC50 = 53.7±7.7 µM at –110 mV; a significant inhibition was documented even at clinically-relevant concentrations (at 3 µM by 13.1±3.0 %). The inhibition was voltage-independent at physiological voltages above –90 mV. The IK1 changes under acetaldehyde may contribute to alcohol-induced alterations of cardiac electrophysiology, especially in individuals with a genetic defect of aldehyde dehydrogenase where the acetaldehyde level may be elevated.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
NJD Ramalho ◽  
O Svecova ◽  
R Kula ◽  
M Simurdova ◽  
J Simurda ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public Institution(s). Main funding source(s): Ministry of Education, Youth and Sports of the Czech Republic Introduction Aminophylline, a bronchodilator used in clinical practice to treat namely severe astma attacks, often induces atrial fibrillation in patients. Modifications of the inward rectifier potassium current IK1 are known to play a role in the genesis of fibrillation. Purpose We aimed to investigate the effect of aminophylline at clinically-relevant concentrations between 3 and 100 µM on IK1 in isolated rat ventricular myocytes. Methods Experiments were performed by the whole cell patch clamp technique on enzymatically isolated rat right ventricular myocytes at room temperature. IK1 was measured as the current sensitive to 100 µM Ba2+. Results We observed a dual steady-state effect of aminophylline at most of the applied concentrations. Either inhibition or activation was apparent in individual cells during application of aminophylline at a given concentration. The smaller was magnitude of the control IK1, the more likely was activation of the current in the presence of aminophylline and vice versa (tested at 10 and 30 µM). The effect was voltage-independent and fully reversible during the subsequent wash-out. The mean aminophylline effect was inhibitory at all concentrations (10, 15, 4, and 23%-inhibition at -50 mV at 3, 10, 30, and 100 µM, respectively). Using a modified version of the population model of IK1 channels that we published before, the dual effect can be explained by interaction of aminophylline with two channel populations in a different way, the first one being inhibited and the second one being activated by the drug. Considering various fractions of these two channel populations in individual cells, varying effects observed in the measured cells can be simulated. Conclusions Aminophylline at clinically-relevant concentrations affects IK1 in rat ventricular myocytes in a dual way, showing both the steady-state activation and inhibition in various cells, even at the same concentration. It may be related to a different effect of the drug on various Kir2.x subunits forming the heterotetrameric IK1 channels present at the cell membrane of a single cell.



1999 ◽  
Vol 90 (1) ◽  
pp. 156-164 ◽  
Author(s):  
Anatoly E. Martynyuk ◽  
Timothy E. Morey ◽  
Pekka M.J. Raatikainen ◽  
Christoph N. Seubert ◽  
Donn M. Dennis

Background Commonly used barbiturate anesthetics may significantly influence cardiac electrophysiologic characteristics. The authors evaluated thiopental (a thiobarbiturate) and methohexital (an oxybarbiturate), two compounds with similar physicochemical properties but different structures, to determine whether they have distinct effects on the major ionic currents that determine action potential duration (APD) in ventricular myocytes. Methods The effects of thiopental and methohexital (50 microM) on APD at 50% (APD50) and 90% (APD90) repolarization were studied in guinea pig and rabbit single ventricular myocytes using the patch-clamp technique in a whole-cell configuration. The ionic mechanisms underlying the APD changes were evaluated by measuring the anesthetics' effects on the L-type calcium inward current, the inward rectifier potassium current, and the delayed rectifier potassium current in guinea pig cells and on the transient outward potassium current in rabbit cells. Results Thiopental and methohexital caused opposite effects on APD. Whereas thiopental prolonged APD50 and APD90 in guinea pig and rabbit ventricular myocytes, methohexital shortened them. Thiopental markedly depressed both the inward and outward components of the inward rectifier potassium current, whereas methohexital caused minimal inhibition of the inward component and no change in the outward component. The delayed rectifier potassium current was inhibited by thiopental but significantly potentiated by methohexital. Neither thiopental nor methohexital significantly affected the transient outward potassium current or the L-type calcium inward current. Conclusions Despite their similar lipid solubilities, molecular weights, and pKa values, thiopental increased and methohexital decreased the APD in ventricular myocytes by predominantly inhibiting the inward rectifier potassium current and the delayed rectifier potassium current and by increasing the delayed rectifier potassium current, respectively. These characteristics suggest distinct structure-specific actions of barbiturates on the function of myocardial ionic channels.



2010 ◽  
Vol 16 (1) ◽  
pp. 61-65
Author(s):  
Ming-jun Zhu ◽  
Guo-juan Wang ◽  
Yong-xia Wang ◽  
Jie-lin Pu ◽  
Hong-jun Liu ◽  
...  






2000 ◽  
Vol 278 (1) ◽  
pp. H50-H59 ◽  
Author(s):  
J. T. Hulme ◽  
C. H. Orchard

The effect of acidosis on the transient outward K+ current ( Ito ) of rat ventricular myocytes has been investigated using the perforated patch-clamp technique. When the holding potential was −80 mV, depolarizing pulses to potentials positive to −20 mV activated Ito in subepicardial cells but activated little Ito in subendocardial cells. Exposure to an acid solution (pH 6.5) had no significant effect on Ito activated from this holding potential in either subepicardial or subendocardial cells. When the holding potential was −40 mV, acidosis significantly increased Ito at potentials positive to −20 mV in subepicardial cells but had little effect on Ito in subendocardial cells. The increase in Ito in subepicardial cells was inhibited by 10 mM 4-aminopyridine. In subepicardial cells, acidosis caused a +8.57-mV shift in the steady-state inactivation curve. It is concluded that in subepicardial rat ventricular myocytes acidosis increases the amplitude of Ito as a consequence of a depolarizing shift in the voltage dependence of inactivation.



2015 ◽  
Vol 467 (12) ◽  
pp. 2437-2446 ◽  
Author(s):  
Minna Hassinen ◽  
Jaakko Haverinen ◽  
Matt E. Hardy ◽  
Holly A. Shiels ◽  
Matti Vornanen


2017 ◽  
Vol 390 (5) ◽  
pp. 471-481 ◽  
Author(s):  
Markéta Bébarová ◽  
Peter Matejovič ◽  
Olga Švecová ◽  
Roman Kula ◽  
Milena Šimurdová ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document