WS-Security on PRODML

2014 ◽  
Vol 1 (1) ◽  
pp. 9-34
Author(s):  
Bobby Suryajaya

SKK Migas plans to apply end-to-end security based on Web Services Security (WS-Security) for Sistem Operasi Terpadu (SOT). However, there are no prototype or simulation results that can support the plan that has already been communicated to many parties. This paper proposes an experiment that performs PRODML data transfer using WS-Security by altering the WSDL to include encryption and digital signature. The experiment utilizes SoapUI, and successfully loaded PRODML WSDL that had been altered with WSP-Policy based on X.509 to transfer a SOAP message.

Author(s):  
Satyasrikanth Palle ◽  
Shivashankar

Objective: The demand for Cellular based multimedia services is growing day by day, in order to fulfill such demand the present day cellular networks needs to be upgraded to support excessive capacity calls along with high data accessibility. Analysis of traffic and huge network size could become very challenging issue for the network operators for scheduling the available bandwidth between different users. In the proposed work a novel QoS Aware Multi Path scheduling algorithm for smooth CAC in wireless mobile networks. The performance of the proposed algorithm is assessed and compared with existing scheduling algorithms. The simulation results show that the proposed algorithm outperforms existing CAC algorithms in terms of throughput and delay. The CAC algorithm with scheduling increases end-to-end throughput and decreases end-to-end delay. Methods: The key idea to implement the proposed research work is to adopt spatial reuse concept of wireless sensor networks to mobile cellular networks. Spatial reusability enhances channel reuse when the node pairs are far away and distant. When Src and node b are communicating with each other, the other nodes in the discovered path should be idle without utilizing the channel. Instead the other nodes are able to communicate parallelly the end-to-end throughput can be improved with acceptable delay. Incorporating link scheduling algorithms to this key concept further enhances the end-to-end throughput with in the turnaround time. So, in this research work we have applied spatial reuse concept along with link scheduling algorithm to enhance end-to-end throughput with in turnaround time. The proposed algorithm not only ensures that a connection gets the required bandwidth at each mobile node on its way by scheduling required slots to meet the QoS requirements. By considering the bandwidth requirement of the mobile connections, the CAC module at the BS not only considers the bandwidth requirement but also conforming the constrains of system dealy and jitter are met. Result: To verify the feasibility and effectiveness of our proposed work, with respect to scheduling the simulation results clearly shows the throughput improvement with Call Admission Control. The number of dropped calls is significantly less and successful calls are more with CAC. The percentage of dropped calls is reduced by 9 % and successful calls are improved by 91%. The simulation is also conducted on time constraint and ratio of dropped calls are shown. The total time taken to forward the packets and the ration of dropped calls is less when compared to non CAC. On a whole the CAC with scheduling algorithms out performs existing scheduling algorithms. Conclusion: In this research work we have proposed a novel QoS aware scheduling algorithm that provides QoS in Wireless Cellular Networks using Call Admission Control (CAC). The simulation results show that the end-to-end throughput has been increased by 91% when CAC is used. The proposed algorithm is also compared with existing link scheduling algorithms. The results reveal that CAC with scheduling algorithm can be used in Mobile Cellular Networks in order to reduce packet drop ratio. The algorithm is also used to send the packets within acceptable delay.


2015 ◽  
Vol 719-720 ◽  
pp. 767-772
Author(s):  
Wei Jun Cheng

In this paper, we present the end-to-end performance of a dual-hop amplify-and-forward variablegain relaying system over Mixture Gamma distribution. Novel closed-form expressions for the probability density function and the moment-generation function of the end-to-end Signal-to-noise ratio (SNR) are derived. Moreover, the average symbol error rate, the average SNR and the average capacity are found based on the above new expressions, respectively. These expressions are more simple and accuracy than the previous ones obtained by using generalized-K (KG) distribution. Finally, numerical and simulation results are shown to verify the accuracy of the analytical results.


2018 ◽  
Vol 7 (3.4) ◽  
pp. 34
Author(s):  
Leela K ◽  
Smitha Vinod

Security is a major concern when it comes to electronic data transfer. Digital signature uses hash function and asymmetric algorithms to uniquely identify the sender of the data and it also ensures integrity of the data transferred. Hybrid encryption uses both symmetric and asymmetric cryptography to enhance the security of the data. Digital Signature is used to identify the owner of the document but it does not hide the information while transferring the document. Anyone can read the message. To avoid this, data sent along with the signature should be secured. In this paper, Digital signature is combined with hybrid encryption to enhance the security level. Security of the data or the document sent is achieved by using hybrid encryption technique along with digital signature. 


2004 ◽  
Vol 13 (3) ◽  
pp. 22-31 ◽  
Author(s):  
Carlos Gutiérrez ◽  
Eduardo Fernández-Medina ◽  
Mario Piattini

Sign in / Sign up

Export Citation Format

Share Document