scholarly journals Irrigated dairy pasture yield and water use efficiency responses to summer applied nitrogen

Author(s):  
F.R. Mckenzie ◽  
J.L. Jacobs ◽  
G.N. Ward

Two experiments determined the potential of N fertiliser to maximise the conversion of summer (October to April) irrigation water to pasture dry matter (DM) in southwest Victoria, Australia. DM consumed increased with increasing N (0 to 100 kg N/ha per grazing, and 50 to 200 kg N/ha every second grazing). Applications of 75 to 100 kg N/ha every grazing, and 150 to 200 kg N/ha every second grazing resulted in the highest water use efficiencies (improvements of 25 to 70% in Year 1, 40 to 63% in Year 2). Applications of 25 kg N/ha every grazing and 50 kg N/ha every second grazing led to the highest N response efficiencies (10 to 19 kg DM/kg N). The increases in DM consumed in response to N fertiliser were similar to responses noted for N applied during autumn, winter and spring in similar environments to the current experiments. Keywords: dry matter, perennial ryegrass, urea, water use efficiency

2004 ◽  
Vol 44 (1) ◽  
pp. 13 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward ◽  
G. Kearney

The effect of different irrigation strategies on turnip forage crop growth rates, dry matter (DM) yield, water use efficiency (WUE), changes in soil volumetric water content, nutritive characteristics and mineral content was determined on different soil types at different sites (site 1 and 2) over 2 years. Treatments were: (A) a dryland control; (B) fully watered to soil field capacity each week; (C) 75% of full watering; (D) 50% of full watering; (E) 25% of full watering; (F) a single watering to soil field capacity or to a maximum of 50 mm between weeks 0–6; (G) a single watering between weeks 6–8; (H) a single watering between weeks 8–10; and (I) a single watering between weeks 10–12 after sowing. In addition, each irrigation treatment received either 0 or 50 kg N/ha applied 5 weeks after sowing. Responses to applied irrigation water were different at each site and also within one year. At site 1, responses to irrigation were adversely affected by insect damage and delayed sowing, particularly in year 1. However, there were significant increases in DM yield to weekly irrigation regimes in both years, with responses greater in year 2, and responses in both years were greater where nitrogen was applied. At site 2, there were significant responses to weekly irrigation regimes in year 1 with DM yields from fully irrigated plots almost double that of the dryland treatment. In year 2, DM yields from all treatments were similar and it is proposed that lower summer temperatures may have contributed to the improved DM yield observed with the dryland treatment. In both years, at site 2, there were generally higher DM yields with nitrogen application irrespective of irrigation regime. Turnip metabolisable energy values were consistently above 11.5 and 13 MJ/kg DM for leaves and roots respectively, with crude protein contents for leaves ranging from 11 to 20% and 13 to 24% and roots from 6 to 14% and 9 to 17% at sites 1 and 2, respectively. Water use efficiencies varied according to irrigation treatment with higher efficiencies observed at site 2 in both years. In year 1 and 2, total WUE at site 1 varied from 5 to 11 kg DM/ha.mm while at site 2 the range was 20–48�kg�DM/ha.mm with higher values being observed in year 2. As with DM yields it is likely that the observed higher WUE in year 2 was due to lower summer temperatures. At site 2, the dryland treatments produced the highest efficiencies in both years. In contrast, WUE from applied irrigation water ranged from 0 to 35 kg DM/ha.mm at site�1 and from 0 to 23 kg DM/ha.mm at site 2. This study suggests that there is potential to economically irrigate turnips to provide additional DM of high nutritional value for lactating dairy cows, however, issues such as sowing dates, soil type, and insect damage will also influence final yields. In particular, summer temperatures influence both dryland growth potential and growth responses to irrigation. Also single irrigations during the growing period will not significantly increase DM yields over a crop grown under dryland conditions.


2004 ◽  
Vol 40 (2) ◽  
pp. 201-214 ◽  
Author(s):  
R. A. L. KANTON ◽  
M. D. DENNETT

Growth and water use of sole crops and intercrops of morphologically contrasting maize and pea cultivars were measured in two years. The maize cultivars were Nancis with erectophile and Sophy with planophile leaves and the pea cultivars Maro a leafy pea and Princess a semi-leafless pea. In the first part of the season water use was lower for sole maize but intercrops and sole pea used similar amounts of water. By 90 days after sowing, when peas had matured, all crops had used similar amounts of water. Maize had slightly greater water use efficiency than peas. Cultivars Nancis and Princess tended to have greater water use efficiency than Sophy and Maro respectively. Intercrops produced more dry matter than sole crops and therefore had consistently greater water use efficiencies.


2017 ◽  
Vol 1 ◽  
pp. 222 ◽  
Author(s):  
Dalel Chakri Telahigue ◽  
Laila Ben Yahia ◽  
Fateh Aljane ◽  
Khaled Belhouchett ◽  
Lamjed Toumi

Five quinoa cultivars introduced from Egypte DRC (Desert Research Center-Caire) were tested in an experimental station in Tunisia located under arid climatic conditions. In order to test their adaptation to abiotic constraints; water requirements, yield (grain, dry matter) and water use efficiency (WUE) were correlated to three water stress: T100% of field capacity (T1), T60% of field capacity (T2) and T30% of field capacity (T3). Net irrigation water requirement was estimated using CROPWAT 8.0 software. The study aims to develop an irrigation scheduling for quinoa from January to Jun during 2015 season. The ET0 was between 1.08 mm/day and 4.95 mm/day and net irrigation water requirement was 287.2 mm. For grain yield, 1000 grains weight and dry matter production results show significant differences between cultivars and water stress. The seeds productivity of the five cultivars ranges between 2092.6kg/ha and 270kg/ha under full irrigation and it decreases to reach up 74% under T3 of field capacity stress in comparison with control stress. Similar results were shown for dry matter production. On refilling soil to field capacity with irrigation at critical depletion, 70% field efficiency was achieved which correspond to optimal condition, while adapting fixed interval per stage. For WUE, highest value of irrigation and total water use efficiency for both grain and dry matter  ​​were recorded to the T2 hydrous stress.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


Author(s):  
Recep Cakir

The article contains data obtained from evaluations related to irrigation water use efficiency (IWUE) and water use efficiency (WUE), for the main crops, irrigated at different stages of growth, on the basis of some findings obtained in the Research Institute in Kırklareli. Each of the experimental crops was sown and farmed following procedures applied by the farmers in the region, except of the irrigation applications which were based on the sensitivity of a certain crop to water shortage in the soil, during the specific growth stages. Similar procedures were applied and all the experimental treatments were irrigated at growth stages, as predicted in the research methodology, and water amounts required to fill the 0-90 cm soil depth to field capacity were implied. Evaluation data obtained from the field experiments with three major crops, grown on the non-coastal lands of Thrace Region showed, that the productivity of irrigation water, as well as water use efficiencies of all analysed crops, are growth stage controlled. The highest IWUE and WUE efficiencies of 0.87 and 0.92 kg da-1 m-3; and 1.08 kg da-1 m-3 and 0.81 kg da-1 m-3; were determined for wheat and sunflower crops, irrigated at booting and flowering stages, respectively. Each m3 of irrigation water, applied during the most sensitive fruit formation stage (Ff) of pumpkin crop, provided additionally 8.47 kg da-1 fruit yield, 8.09 fruit numbers and 0.28 kg da-1 seed yields, more than those of rainfed farming (R).


Sign in / Sign up

Export Citation Format

Share Document