Temperature-Dependent Mechanical Response of Carbon Nanotube Reinforced Epoxy Nanocomposites: An Atomistic Simulation Study

Author(s):  
Jacob Schichtel ◽  
Bonsung Koo ◽  
Aditi Chattopadhyay
Calphad ◽  
2021 ◽  
Vol 74 ◽  
pp. 102317
Author(s):  
Won-Mi Choi ◽  
Jin-Soo Kim ◽  
Won-Seok Ko ◽  
Dong Geun Kim ◽  
Yong Hee Jo ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
pp. 153-165
Author(s):  
Rajendran Selvamani ◽  
M. Mahaveer Sree Jayan ◽  
Rossana Dimitri ◽  
Francesco Tornabene ◽  
Farzad Ebrahimi

AbstractThe present paper aims at studying the nonlinear ultrasonic waves in a magneto-thermo-elastic armchair single-walled (SW) carbon nanotube (CNT) with mass sensors resting on a polymer substrate. The analytical formulation accounts for small scale effects based on the Eringen’s nonlocal elasticity theory. The mathematical model and its differential equations are solved theoretically in terms of dimensionless frequencies while assuming a nonlinear Winkler-Pasternak-type foundation. The solution is obtained by means of ultrasonic wave dispersion relations. A parametric work is carried out to check for the effect of the nonlocal scaling parameter, together with the magneto-mechanical loadings, the foundation parameters, the attached mass, boundary conditions and geometries, on the dimensionless frequency of nanotubes. The sensitivity of the mechanical response of nanotubes investigated herein, could be of great interest for design purposes in nano-engineering systems and devices.


2009 ◽  
Vol 18 (7) ◽  
pp. 2920-2924 ◽  
Author(s):  
Liu Wen-Liang ◽  
Zhang Kai-Wang ◽  
Zhong Jian-Xin

Sign in / Sign up

Export Citation Format

Share Document