HABITAT RESTORATION

1994 ◽  
Vol 12 (2) ◽  
pp. 215.2-215
Keyword(s):  
Author(s):  
Nathalie Pettorelli

This book intends to familiarise prospective users in the environmental community with satellite remote sensing technology and its applications, introducing terminology and principles behind satellite remote sensing data and analyses. It provides a detailed overview of the possible applications of satellite data in natural resource management, demonstrating how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Topics considered include the use of satellite data to monitor the various dimensions of biodiversity; the use of this technology to track pressures on biodiversity such as invasive species, pollution, and illegal fishing; the utility of satellite remote sensing to inform the management of protected areas, translocation, and habitat restoration; and the contribution of satellite remote sensing towards the monitoring of ecosystem services and wellbeing. The intended audience is ecologists and environmental scientists; the book is targeted as a handbook and is therefore also suitable for advanced undergraduate and postgraduate students in the biological and ecological sciences, as well as policy makers and specialists in the fields of conservation biology, biodiversity monitoring, and natural resource management. The book assumes no prior technical knowledge of satellite remote sensing systems and products. It is written so as to generate interest in the ecological, environmental management, and remote sensing communities, highlighting issues associated with the emergence of truly synergistic approaches between these disciplines.


2021 ◽  
Vol 14 ◽  
pp. 194008292110281
Author(s):  
Elène Haave-Audet ◽  
Doris Audet ◽  
Michelle Monge-Velazquez ◽  
Eleanor Flatt ◽  
Andrew Whitworth

Introduction: Background and Research Aims: Assessing biodiversity recovery is key to determine whether the objectives of habitat restoration for conservation are met. Many restoration initiatives use cross-sectional comparisons of wildlife communities to infer restoration impact instead of longitudinal assessments from a baseline state. Using an indicator of biodiversity in the neotropics— bats— we demonstrate how assessing community diversity and composition in an area targeted for restoration prior to implementation, and when compared to surrounding intact forest, provides the groundwork to track changes in the community post-restoration. Methods We assessed bat communities by 1) using mist-net surveys to identify species in the family Phyllostomidae (leaf-nosed bats), and 2) conducting acoustic surveys to identify non-phyllostomid species (aerial insectivores). Results For both groups, we found that areas targeted for restoration had similar diversity as the surrounding forest, but the two habitat types differed in community composition. Phyllostomids were captured at higher rates in forest, but aerial insectivores were detected at higher rates in restoration habitat. Conclusion Our baseline assessment revealed unexpected diversity in areas targeted for restoration. The presence of all trophic groups in restoration habitat suggests that bats provide key ecosystem services in the restoration process, such as through seed dispersal, pollination and insect pest control. Implications for Conservation: Conducting a baseline survey of bats in areas targeted for restoration demonstrated that the community was not species poor at the baseline and was different from the surrounding forest, allowing us to better track restoration success and the effects of different restoration treatments.


2021 ◽  
pp. 1-18
Author(s):  
PEMA KHANDU ◽  
GEORGE A. GALE ◽  
SARA BUMRUNGSRI

Summary White-bellied Heron Ardea insignis (WBH) is critically endangered, but we lack data on many aspects of its basic ecology and threats to the species are not clearly understood. The goal of this study was to analyse WBH foraging microhabitat selection, foraging behaviour, and prey preferences in two river basins (Punatsangchhu and Mangdechhu) in Bhutan which are likely home to one of the largest remaining populations of WBH. We also explored the relationship between the relative abundance of the WBH and prey biomass catch per unit effort within four foraging river microhabitats (pool, pond, riffle and run). Prey species were sampled in 13 different 100-m thalweg lengths of the rivers using cast nets and electrofishing gear. Riffles and pools were the most commonly used microhabitats; relative abundance was the highest in riffles. The relative abundance of WBH and prey biomass catch per unit effort (CPUE) also showed a weak but significant positive correlation (rs = 0.22). The highest biomass CPUE was observed in riffles while the lowest was found in the ponds. From the 97 prey items caught by the WBH, 95% of the prey were fish. The WBH mainly exploited three genera of fish (Garra, Salmo, and Schizothorax) of which Schizothorax (64%) was the most frequently consumed. This study provides evidence in support of further protection of critical riverine habitat and fish resources for this heron. Regular monitoring of sand and gravel mining, curbing illegal fishing, habitat restoration/mitigation, and developing sustainable alternatives for local people should be urgently implemented by the government and other relevant agencies. Further study is also required for understanding the seasonal variation and abundance of its prey species in their prime habitats along the Punatsangchhu and Mangdechhu basins.


Sign in / Sign up

Export Citation Format

Share Document