scholarly journals Tandem Friedel-Crafts-Alkylation-Enantioselective-Protonation by Artificial Enzyme Iminium Catalysis

Author(s):  
Reuben Leveson-Gower ◽  
Ruben de Boer ◽  
Gerard Roelfes

The incorporation of organocatalysts into protein scaffolds, i.e. the production of organocatalytic artificial enzymes, holds the promise of overcoming some of the limitations of this powerful catalytic approach. In particular, transformations for which good reactivity or selectivity is challenging for organocatalysts may find particular benefit from translation into a protein scaffold so that its chiral microenvironment can be utilised in catalysis. Previously, we showed that incorporation of the non-canonical amino acid para-aminophenylalanine into the non-enzymatic protein scaffold LmrR forms a proficient and enantioselective artificial enzyme (LmrR_pAF) for the Friedel-Crafts alkylation of indoles with enals. The unnatural aniline side-chain is directly involved in catalysis, operating via a well-known organocatalytic iminium-based mechanism. In this study, we show that LmrR_pAF can enantioselectively form tertiary carbon centres not only during C-C bond formation, but also by enantioselective protonation. Control over this process is an ongoing challenge for small-molecule catalysts for which general solutions do not exist. LmrR_pAF can selectively deliver a proton to one face of a prochiral enamine intermediate delivering product enantiomeric excesses and yields that rival the best organocatalyst for this transformation. The importance of various side-chains in the pocket of LmrR is distinct from the Friedel-Crafts reaction without enantioselective protonation, and two particularly important residues were probed by exhaustive mutagenesis. This study shows how organocatalytic artificial enzymes can provide solutions to transformations which otherwise require empirical optimisation and design of multifunctional small molecule catalysts.

2021 ◽  
Author(s):  
Reuben B. Leveson-Gower ◽  
Zhi Zhou ◽  
Ivana Drienovská ◽  
Gerard Roelfes

We show that the incorporation of the non-canonical amino acid para-aminophenylalanine (pAF) into the non-enzymatic protein scaffold LmrR creates a proficient and stereoselective artificial enzyme (LmrR_pAF) for the vinylogous Friedel-crafts alkylation between alpha, beta-unsaturated aldehydes and indoles. pAF acts as a catalytic residue, activating enal substrates towards conjugate addition via the formation of intermediate iminium ion species, whilst the protein scaffold provides rate acceleration and enantio-induction. Improved LmrR_pAF varants were identified by direted evolution advised by alanine-scanning to obtain a triple mutant that provided higher yields and enantioselectivities for a range of enals and indoles. Analys of Michaelis-Menten kinetics of LmrR-pAF and tevolved mutants reveals that new activities emerge via evolutionary pathways that diverge from one another and specialise catalytic reactivity.<br>


2021 ◽  
Author(s):  
Reuben B. Leveson-Gower ◽  
Zhi Zhou ◽  
Ivana Drienovská ◽  
Gerard Roelfes

We show that the incorporation of the non-canonical amino acid para-aminophenylalanine (pAF) into the non-enzymatic protein scaffold LmrR creates a proficient and stereoselective artificial enzyme (LmrR_pAF) for the vinylogous Friedel-crafts alkylation between alpha, beta-unsaturated aldehydes and indoles. pAF acts as a catalytic residue, activating enal substrates towards conjugate addition via the formation of intermediate iminium ion species, whilst the protein scaffold provides rate acceleration and enantio-induction. Improved LmrR_pAF varants were identified by direted evolution advised by alanine-scanning to obtain a triple mutant that provided higher yields and enantioselectivities for a range of enals and indoles. Analys of Michaelis-Menten kinetics of LmrR-pAF and tevolved mutants reveals that new activities emerge via evolutionary pathways that diverge from one another and specialise catalytic reactivity.<br>


2020 ◽  
Author(s):  
Michele Larocca

<p>Protein folding is strictly related to the determination of the backbone dihedral angles and depends on the information contained in the amino acid sequence as well as on the hydrophobic effect. To date, the type of information embedded in the amino acid sequence has not yet been revealed. The present study deals with these problematics and aims to furnish a possible explanation of the information contained in the amino acid sequence, showing and reporting rules to calculate the backbone dihedral angles φ. The study is based on the development of mechanical forces once specific chemical interactions are established among the side chain of the residues in a polypeptide chain. It aims to furnish a theoretical approach to predict backbone dihedral angles which, in the future, may be applied to computational developments focused on the prediction of polypeptide structures.</p>


2018 ◽  
Author(s):  
Fei He ◽  
Li Mi ◽  
Yanfei Shen ◽  
Toshiyuki Mori ◽  
Songqin Liu ◽  
...  

Developing highly efficient artificial enzymes that directly employ O<sub>2</sub> as terminal oxidant has long been pursued but has rarely achieved yet. We report Fe-N-C has unusual enzyme-like activity in both dehydrogenation and monoxygenation of organic substrates with ~100% selectivity by direct using O<sub>2</sub>.


2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


1985 ◽  
Vol 50 (12) ◽  
pp. 2925-2936 ◽  
Author(s):  
Štěpánka Štokrová ◽  
Jan Pospíšek ◽  
Jaroslav Šponar ◽  
Karel Bláha

Polypeptides (Lys-X-Ala)n and (Lys-X-Gly)n in which X represents residues of isoleucine and norleucine, respectively, and polypeptide (Tle-Lys-Ala)n, were synthesized via polymerization of 1-hydroxysuccinimidyl esters of the appropriate tripeptides to complete previously studied series. Circular dichroism (CD) spectra of the respective polymers were measured as a function of pH and salt concentration of the medium. The results were correlated with those obtained previously with the same series containing different amino acid residues at the X-position. The helix forming ability of the polypeptides (Lys-X-Ala)n with linear X side chain was found to be independent of the length. In the series (Lys-X-Gly)n the unordered conformation was the most probable one except (Lys-Ile-Gly)n. This polymer assumed the β conformation even in low salt solution at neutral pH. An agreement with some theoretical work concerned with the restriction of conformational freedom of amino acid residue branching at Cβ atom with our experimental results is evident.


1994 ◽  
Vol 59 (6) ◽  
pp. 1439-1450 ◽  
Author(s):  
Miroslava Žertová ◽  
Jiřina Slaninová ◽  
Zdenko Procházka

An analysis of the uterotonic potencies of all analogs having substituted L- or D-tyrosine or -phenylalanine in position 2 and L-arginine, D-arginine or D-homoarginine in position 8 was made. The series of analogs already published was completed by the solid phase synthesis of ten new analogs having L- or D-Phe, L- or D-Phe(2-Et), L- or D-Phe(2,4,6-triMe) or D-Tyr(Me) in position 2 and either L- or D-arginine in position 8. All newly synthesized analogs were found to be uterotonic inhibitors. Deamination increases both the agonistic and antagonistic potency. In the case of phenylalanine analogs the change of configuration from L to D in position 2 enhances the uterotonic inhibition for more than 1 order of magnitude. The L to D change in position 8 enhances the inhibitory potency negligibly. Prolongation of the side chain of the D-basic amino acid in position 8 seems to decrease slightly the inhibitory potency if there is L-substituted amino acid in position 2. On the other hand there is a tendency to the increase of the inhibitory potency if there is D-substituted amino acid in position 2.


1991 ◽  
Vol 56 (9) ◽  
pp. 1963-1970 ◽  
Author(s):  
Jan Hlaváček ◽  
Václav Čeřovský ◽  
Jana Pírková ◽  
Pavel Majer ◽  
Lenka Maletínská ◽  
...  

In a series of analogues of the cholecystokinin octapeptide (CCK-8) the amino acid residues were gradually modified by substituting Gly by Pro in position 4, Trp by His in position 5, Met by Cle in position 6, or the Gly residue was inserted between Tyr and Met in positions 2 and 3 of the peptide chain, and in the case of the cholecystokinin heptapeptide (CCK-7) the Met residues were substituted by Nle or Aib. These peptides were investigated from the point of view of their biological potency in the peripheral and central region. From the results of the biological tests it follows that the modifications carried out in these analogues and in their Nα-Boc derivatives mean a suppression of the investigated biological activities by 2-3 orders of magnitude (at a maximum dose of the tested substance of 2 . 10-2 mg per animal).This means that a disturbance of the assumed biologically active conformation of CCK-8, connected with a considerable decrease of the biological potency of the molecule, takes place not only after introduction of the side chain into its centre (substitution of Gly4), but also after the modification of the side chains of the amino acids or by extension of the backbone in further positions around this central amino acid.


Sign in / Sign up

Export Citation Format

Share Document