scholarly journals Synthesis and Evaluation of a Library of Alternating Amphipathic Copolymers to Solubilize and Study Membrane Proteins

Author(s):  
Adrian H. Kopf ◽  
Odette Lijding ◽  
Barend O. W. Elenbaas ◽  
Martijn C. Koorengevel ◽  
Justyna M. Dobruchowska ◽  
...  

Amphipathic copolymers such as poly(styrene-maleic acid) (SMA) are promising tools for the facile extraction of membrane proteins (MPs) into native nanodiscs. Here, we designed and synthesized a library of well-defined alternating copolymers of SMA analogues in order to elucidate polymer properties that are important for MP solubilization and stability. MP extraction efficiency was determined using KcsA from E.coli membranes and general solubilization efficiency was investigated via turbidimetry experiments on membranes of E.coli, yeast mitochondria and synthetic lipids. Remarkably, halogenation of SMA copolymers dramatically improved solubilization efficiency in all systems, while substituents on the copolymer backbone improved resistance to Ca2+. Relevant polymer properties were found to include hydrophobic balance, size and positioning of substituents, rigidity and electronic effects. The library thus contributes to the rational design of copolymers for the study of MPs.

2021 ◽  
Author(s):  
Nathan G. Brady ◽  
Cameron E. Workman ◽  
Bridgie Cawthon ◽  
Barry D. Bruce ◽  
Brian K. Long

1986 ◽  
Vol 20 (4) ◽  
pp. 289-301 ◽  
Author(s):  
Toshio Shimizu ◽  
Mitsutaka Seki ◽  
Jan C.T. Kwak

2019 ◽  
Vol 114 ◽  
pp. 485-500 ◽  
Author(s):  
Olena Korotych ◽  
Jyotirmoy Mondal ◽  
Kerim M. Gattás-Asfura ◽  
Jessica Hendricks ◽  
Barry D. Bruce

Author(s):  
Javier García-Nafría ◽  
Christopher G. Tate

Electron cryo-microscopy (cryo-EM) has revolutionized structure determination of membrane proteins and holds great potential for structure-based drug discovery. Here we discuss the potential of cryo-EM in the rational design of therapeutics for membrane proteins compared to X-ray crystallography. We also detail recent progress in the field of drug receptors, focusing on cryo-EM of two protein families with established therapeutic value, the γ-aminobutyric acid A receptors (GABAARs) and G protein–coupled receptors (GPCRs). GABAARs are pentameric ion channels, and cryo-EM structures of physiological heteromeric receptors in a lipid environment have uncovered the molecular basis of receptor modulation by drugs such as diazepam. The structures of ten GPCR–G protein complexes from three different classes of GPCRs have now been determined by cryo-EM. These structures give detailed insights into molecular interactions with drugs, GPCR–G protein selectivity, how accessory membrane proteins alter receptor–ligand pharmacology, and the mechanism by which HIV uses GPCRs to enter host cells.


2019 ◽  
Vol 5 (1) ◽  
pp. eaat6413 ◽  
Author(s):  
Hengwei Wang ◽  
Xiang-Kui Gu ◽  
Xusheng Zheng ◽  
Haibin Pan ◽  
Junfa Zhu ◽  
...  

The prominent size effect of metal nanoparticles shapes decisively nanocatalysis, but entanglement of the corresponding geometric and electronic effects prevents exploiting their distinct functionalities. In this work, we demonstrate that in palladium (Pd)–catalyzed aerobic oxidation of benzyl alcohol, the geometric and electronic effects interplay and compete so intensively that both activity and selectivity showed in volcano trends on the Pd particle size unprecedentedly. By developing a strategy of site-selective blocking via atomic layer deposition along with first principles calculations, we disentangle these two effects and unveil that the geometric effect dominates the right side of the volcano with larger-size Pd particles, whereas the electronic effect directs the left of the volcano with smaller-size Pd particles substantially. Selective blocking of the low-coordination sites prevents formation of the undesired by-product beyond the volcano relationship, achieving a remarkable benzaldehyde selectivity and activity at the same time for 4-nm Pd. Disentangling the geometric and electronic effects of metal nanoparticles opens a new dimension for rational design of catalysts.


2005 ◽  
Vol 38 (8) ◽  
pp. 3475-3481 ◽  
Author(s):  
Ming Chen ◽  
Kenneth P. Ghiggino ◽  
Albert W. H. Mau ◽  
Wolfgang H. F. Sasse ◽  
San H. Thang ◽  
...  

2016 ◽  
Vol 44 (4) ◽  
pp. 1011-1018 ◽  
Author(s):  
Sarah C. Lee ◽  
Naomi L. Pollock

The use of styrene maleic acid lipid particles (SMALPs) for the purification of membrane proteins (MPs) is a rapidly developing technology. The amphiphilic copolymer of styrene and maleic acid (SMA) disrupts biological membranes and can extract membrane proteins in nanodiscs of approximately 10 nm diameter. These discs contain SMA, protein and membrane lipids. There is evidence that MPs in SMALPs retain their native structures and functions, in some cases with enhanced thermal stability. In addition, the method is compatible with biological buffers and a wide variety of biophysical and structural analysis techniques. The use of SMALPs to solubilize and stabilize MPs offers a new approach in our attempts to understand, and influence, the structure and function of MPs and biological membranes. In this review, we critically assess progress with this method, address some of the associated technical challenges, and discuss opportunities for exploiting SMA and SMALPs to expand our understanding of MP biology.


Sign in / Sign up

Export Citation Format

Share Document