amphiphilic copolymer
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 57)

H-INDEX

34
(FIVE YEARS 6)

Author(s):  
Tong Shen ◽  
Chuanluan Guo ◽  
Ying Cao ◽  
Yan Lv ◽  
Jiatian Zhang ◽  
...  

Author(s):  
Yujia Tong ◽  
Wenlong Ding ◽  
Lijian Shi ◽  
Weixing Li

Abstract Ultrafiltration membranes are widely used for the treatment of papermaking wastewater. The antifouling performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes can be improved by changing the hydrophilicity. Here, a novel amphiphilic copolymer material, PVDF grafted with N-isobutoxy methacrylamide (PVDF-g-IBMA), was prepared using ultraviolet-induced Cu(II)-mediated reversible deactivation radical polymerization. The amphipathic copolymer was used to prepare ultrafiltration membrane via NIPS. The prepared PVDF-g-IBMA ultrafiltration membrane was estimated using 1H NMR, FT-IR, and DSC. The contact angle, casting viscosity, and the permeation performance of the PVDF-g-IBMA ultrafiltration membrane were also determined. The pure water flux, bovine serum albumin removal rate, and pure water flux recovery rate of the PVDF-g-IBMA ultrafiltration membrane were 432.8 L·m−2·h−1, 88.4%, and 90.8%, respectively. Furthermore, for the treatment of actual papermaking wastewater, the chemical oxygen demand and turbidity removal rates of the membrane were 61.5% and 92.8%, respectively. The PVDF-g-IBMA amphiphilic copolymer ultrafiltration membrane exhibited good hydrophilicity and antifouling properties, indicating its potential for treating papermaking wastewater.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3674
Author(s):  
Katerina Lazarova ◽  
Silvia Bozhilova ◽  
Sijka Ivanova ◽  
Darinka Christova ◽  
Tsvetanka Babeva

Thin spin-coated polymer films of amphiphilic copolymer obtained by partial acetalization of poly (vinyl alcohol) are used as humidity-sensitive media. They are deposited on polymer substrate (PET) in order to obtain a flexible humidity sensor. Pre-metallization of substrate is implemented for increasing the optical contrast of the sensor, thus improving the sensitivity. The morphology of the sensors is studied by surface profiling, while the transparency of the sensor is controlled by transmittance measurements. The sensing behavior is evaluated through monitoring of transmittance values at different levels of relative humidity gradually changing in the range 5–95% and the influence of up to 1000 bending deformations is estimated by determining the hysteresis and sensitivity of the flexible sensor after each set of deformations. The successful development of a flexible sensor for optical monitoring of humidity in a wide humidity range is demonstrated and discussed.


Author(s):  
Hongshuang Guo ◽  
Chiyu Wen ◽  
Shu Tian ◽  
Xiangyu Zhang ◽  
Yiming Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document