scholarly journals Sparse complete sets for coNP: Solution of the P versus NP problem

2021 ◽  
Author(s):  
Frank Vega
Keyword(s):  
2021 ◽  
Author(s):  
Frank Vega

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is coNP. Whether NP = coNP is another fundamental question that it is as important as it is unresolved. In 1979, Fortune showed that if any sparse language is coNP-complete, then P = NP. We prove there is a possible sparse language in coNP-complete. In this way, we demonstrate the complexity class P is equal to NP.


Author(s):  
Frank Vega

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is coNP. Whether NP = coNP is another fundamental question that it is as important as it is unresolved. In 1979, Fortune showed that if any sparse language is coNP-complete, then P = NP. We prove there is a possible sparse language in coNP-complete. In this way, we demonstrate the complexity class P is equal to NP.


2021 ◽  
Author(s):  
Frank Vega

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is coNP. Whether NP = coNP is another fundamental question that it is as important as it is unresolved. In 1979, Fortune showed that if any sparse language is coNP-complete, then P = NP. We prove there is a possible sparse language in coNP-complete. In this way, we demonstrate the complexity class P is equal to NP.


2021 ◽  
Author(s):  
Frank Vega

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is coNP. Whether NP = coNP is another fundamental question that it is as important as it is unresolved. In 1979, Fortune showed that if any sparse language is coNP-complete, then P = NP. We prove there is a possible sparse language in coNP-complete. In this way, we demonstrate the complexity class P is equal to NP.


Author(s):  
Jia-Bao Liu ◽  
Muhammad Faisal Nadeem ◽  
Mohammad Azeem

Aims and Objective: The idea of partition and resolving sets plays an important role in various areas of engineering, chemistry and computer science such as robot navigation, facility location, pharmaceutical chemistry, combinatorial optimization, networking, and mastermind game. Method: In a graph to obtain the exact location of a required vertex which is unique from all the vertices, several vertices are selected this is called resolving set and its generalization is called resolving partition, where selected vertices are in the form of subsets. Minimum number of partitions of the vertices into sets is called partition dimension. Results: It was proved that determining the partition dimension a graph is nondeterministic polynomial time (NP) problem. In this article, we find the partition dimension of convex polytopes and provide their bounds. Conclusion: The major contribution of this article is that, due to the complexity of computing the exact partition dimension we provides the bounds and show that all the graphs discussed in results have partition dimension either less or equals to 4, but it cannot been be greater than 4.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francisca Carrillo-Morales ◽  
Francisco Correa ◽  
Olaf Lechtenfeld

Abstract For the rational quantum Calogero systems of type A1⊕A2, AD3 and BC3, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra ‘odd’ charges appearing for integral couplings. Formulæ for the energy eigenstates are used to tabulate the low-level wave functions.


2013 ◽  
Vol 46 (48) ◽  
pp. 485303 ◽  
Author(s):  
Jukka Kiukas ◽  
Jussi Schultz
Keyword(s):  

1974 ◽  
Vol 15 (10) ◽  
pp. 1787-1799 ◽  
Author(s):  
B. R. Judd ◽  
W. Miller ◽  
J. Patera ◽  
P. Winternitz

Sign in / Sign up

Export Citation Format

Share Document