An Efficient Machine Learning Approach for Virtual Machine Resource Demand Prediction

Author(s):  
Jitendra Kumar ◽  
Ashutosh Kumar Singh
2021 ◽  
Author(s):  
Zaid Abdi Alkareem Alyasseri ◽  
Mohammed Azmi Al-Betar ◽  
Mohammed A. Awadallah ◽  
Sharif Naser Makhadmeh ◽  
Osama Ahmad Alomari ◽  
...  

2021 ◽  
pp. 116073
Author(s):  
Paulo Augusto de Lima Medeiros ◽  
Gabriel Vinícius Souza da Silva ◽  
Felipe Ricardo dos Santos Fernandes ◽  
Ignacio Sánchez-Gendriz ◽  
Hertz Wilton Castro Lins ◽  
...  

2017 ◽  
Vol 14 (11) ◽  
pp. 141-150 ◽  
Author(s):  
Lingwen Zhang ◽  
Yishun Li ◽  
Yajun Gu ◽  
Wenkao Yang

2021 ◽  
Author(s):  
Xin Bai ◽  
Xin Guo ◽  
Linjun Wang

Diabatization of one-electron states in flexible molecular aggregates is a great challenge due to the presence of surface crossings between molecular orbital (MO) levels and the complex interaction between MOs of neighboring molecules. In this work, we present an efficient machine learning approach to calculate electronic couplings between quasi-diabatic MOs without the need of nonadiabatic coupling calculations. Using MOs of rigid molecules as references, the MOs that can be directly regarded to be quasi-diabatic in molecular dynamics are selected out, state tracked, and phase corrected. On the basis of this information, artificial neural networks are trained to characterize the structure-dependent onsite energies of quasi-diabatic MOs and the inter-molecular electronic couplings. A representative sequence of DNA is systematically studied as an illustration. Smooth time evolution of electronic couplings in all base pairs is obtained with quasi-diabatic MOs. Especially, our method can calculate electronic couplings between different quasi-diabatic MOs independently, and thus possesses unique advantages in many applications.


Author(s):  
Prankur Rusia ◽  
Yatharath Bhateja ◽  
Indranil Misra ◽  
S. Manthira Moorthi ◽  
Debajyoti Dhar

2015 ◽  
Vol 59 ◽  
pp. 116-124 ◽  
Author(s):  
Lufeng Hu ◽  
Guangliang Hong ◽  
Jianshe Ma ◽  
Xianqin Wang ◽  
Huiling Chen

Sign in / Sign up

Export Citation Format

Share Document