scholarly journals Two Phase Change Material with Different Closed Shape Fins in Building Integrated Photovoltaic System Temperature Regulation

Author(s):  
M. J. Huang
The Analyst ◽  
2021 ◽  
Author(s):  
Rui Jie Li ◽  
Michael G. Mauk ◽  
Youngung Seok ◽  
Haim H. Bau

Electricty-free incubation of isothermal enzymatic amplification with a composite comprised of exothermic reactants for heat generation and phase change material for temperature regulation.


1992 ◽  
Vol 114 (1) ◽  
pp. 84-90 ◽  
Author(s):  
J. S. Lim ◽  
A. Bejan ◽  
J. H. Kim

This paper documents the relative merits of using more than one type of phase-change material for energy storage. In the case of two phase-change systems in series, which are melted by the same stream of hot fluid, there exists an optimal melting point for each of the two materials. The first (upstream) system has the higher of the two melting points. The second part of the paper addresses the theoretical limit in which the melting point can vary continuously along the source stream, i.e., when an infinite number of different (and small) phase-change systems are being heated in series. It is shown that the performance of this scheme is equivalent to that which uses an optimum single phase-change material, in which the hot stream remains unmixed during the melting process. The time dependence, finite thickness and longitudinal variation of the melt layer caused by an unmixed stream are considered in the third part of the paper. It is shown that these features have a negligible effect on the optimal melting temperature, which is slightly higher than (T∞Te)1/2.


Sign in / Sign up

Export Citation Format

Share Document