scholarly journals ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on Large-Scale Power System Test Cases

2021 ◽  
Author(s):  
Francesco Casella ◽  
Adrien Guironnet
2020 ◽  
Vol 10 (21) ◽  
pp. 7592
Author(s):  
Georgios Tzounas ◽  
Ioannis Dassios ◽  
Muyang Liu ◽  
Federico Milano

This paper discusses the numerical solution of the generalized non-Hermitian eigenvalue problem. It provides a comprehensive comparison of existing algorithms, as well as of available free and open-source software tools, which are suitable for the solution of the eigenvalue problems that arise in the stability analysis of electric power systems. The paper focuses, in particular, on methods and software libraries that are able to handle the large-scale, non-symmetric matrices that arise in power system eigenvalue problems. These kinds of eigenvalue problems are particularly difficult for most numerical methods to handle. Thus, a review and fair comparison of existing algorithms and software tools is a valuable contribution for researchers and practitioners that are interested in power system dynamic analysis. The scalability and performance of the algorithms and libraries are duly discussed through case studies based on real-world electrical power networks. These are a model of the All-Island Irish Transmission System with 8640 variables; and, a model of the European Network of Transmission System Operators for Electricity, with 146,164 variables.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4987
Author(s):  
Xinhu Zheng ◽  
Dongliang Duan ◽  
Liuqing Yang ◽  
Haonan Wang

The optimal power flow (OPF) problem plays an important role in power system operation and control. The problem is nonconvex and NP-hard, hence global optimality is not guaranteed and the complexity grows exponentially with the size of the system. Therefore, centralized optimization techniques are not suitable for large-scale systems and an efficient decomposed implementation of OPF is highly demanded. In this paper, we propose a novel and efficient method to decompose the entire system into multiple sub-systems based on automatic regionalization and acquire the OPF solution across sub-systems via a modified MATPOWER solver. The proposed method is implemented in a modified solver and tested on several IEEE Power System Test Cases. The performance is shown to be more appealing compared with the original solver.


2020 ◽  
Vol 140 (6) ◽  
pp. 531-538
Author(s):  
Kotaro Nagaushi ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura ◽  
Atsushi Sakahara ◽  
...  

2016 ◽  
Vol 136 (5) ◽  
pp. 484-496 ◽  
Author(s):  
Yusuke Udagawa ◽  
Kazuhiko Ogimoto ◽  
Takashi Oozeki ◽  
Hideaki Ohtake ◽  
Takashi Ikegami ◽  
...  

SLEEP ◽  
2020 ◽  
Author(s):  
Luca Menghini ◽  
Nicola Cellini ◽  
Aimee Goldstone ◽  
Fiona C Baker ◽  
Massimiliano de Zambotti

Abstract Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical settings.


Author(s):  
Karl‐Kiên Cao ◽  
Jannik Haas ◽  
Evelyn Sperber ◽  
Shima Sasanpour ◽  
Seyedfarzad Sarfarazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document