scholarly journals Blocking Glutamate Carboxypeptidase II Inhibited Glutamate Excitotoxicity and Regulated Immune Responses in Experimental Autoimmune Encephalomyelitis

2013 ◽  
Vol 4 ◽  
Author(s):  
Bing So Jin ◽  
Ha Danbee ◽  
Kim Jinhee ◽  
Cho Jinhee ◽  
Lee Seung-Hong ◽  
...  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Wen-Tsan Weng ◽  
Ping-Chang Kuo ◽  
Dennis A. Brown ◽  
Barbara A. Scofield ◽  
Destin Furnas ◽  
...  

Abstract Background Multiple sclerosis (MS) is a progressive autoimmune disease characterized by the accumulation of pathogenic inflammatory immune cells in the central nervous system (CNS) that subsequently causes focal inflammation, demyelination, axonal injury, and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model that mimics the key features of MS. Presently, the dietary consumption of foods rich in phenols has been reported to offer numerous health benefits, including anti-inflammatory activity. One such compound, 4-ethylguaiacol (4-EG), found in various foods, is known to attenuate inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects on modulating the CNS inflammatory immune responses remains unknown. Thus, in this study, we assessed the therapeutic effect of 4-EG in EAE using both chronic and relapsing-remitting animal models and investigated the immunomodulatory effects of 4-EG on neuroinflammation and Th1/Th17 differentiation in EAE. Methods Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced followed by 4-EG treatment. The effects of 4-EG on disease progression, peripheral Th1/Th17 differentiation, CNS Th1/Th17 infiltration, microglia (MG) activation, and blood-brain barrier (BBB) disruption in EAE were evaluated. In addition, the expression of MMP9, MMP3, HO-1, and Nrf2 was assessed in the CNS of C57BL/6 EAE mice. Results Our results showed that 4-EG not only ameliorated disease severity in C57BL/6 chronic EAE but also mitigated disease progression in SJL/J relapsing-remitting EAE. Further investigations of the cellular and molecular mechanisms revealed that 4-EG suppressed MG activation, mitigated BBB disruption, repressed MMP3/MMP9 production, and inhibited Th1 and Th17 infiltration in the CNS of EAE. Furthermore, 4-EG suppressed Th1 and Th17 differentiation in the periphery of EAE and in vitro Th1 and Th17 cultures. Finally, we found 4-EG induced HO-1 expression in the CNS of EAE in vivo as well as in MG, BV2 cells, and macrophages in vitro. Conclusions Our work demonstrates that 4-EG confers protection against autoimmune disease EAE through modulating neuroinflammation and inhibiting Th1 and Th17 differentiation, suggesting 4-EG, a natural compound, could be potentially developed as a therapeutic agent for the treatment of MS/EAE.


2019 ◽  
Vol 26 (3) ◽  
pp. 129-138 ◽  
Author(s):  
Ivan Pilipović ◽  
Ivana Vujnović ◽  
Raisa Petrović ◽  
Zorica Stojić-Vukanić ◽  
Gordana Leposavić

2005 ◽  
Vol 185 (2) ◽  
pp. 243-252 ◽  
Author(s):  
M Merle Elloso ◽  
Kristen Phiel ◽  
Ruth A Henderson ◽  
Heather A Harris ◽  
Steven J Adelman

Estrogens have been shown to modulate disease activity in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis. Consistent with these findings, the severity of disease is reduced in pregnant women with multiple sclerosis when levels of estrogens are high. Estrogens bind to two known estrogen receptors (ER), ERα and ERβ. The relative contribution of these receptors to estrogen-mediated suppression of EAE was explored using ER-selective ligands. The ER antagonist ICI 182 780 reversed the suppressive effects of 17β-estradiol (E2), demonstrating that the protective effects of E2 on disease are dependent upon ER signaling. Treatment of SJL mice with the ERα-selective agonist proteolipid protein (PPT) prior to the induction of disease resulted in suppression of clinical symptoms of disease, whereas treatment with an ERβ-selective agonist (WAY-202041) had no effect. Treatment of mice with PLP peptide 139–151 (PPT) was also associated with decreased immune responses associated with disease. Consistent with its lack of effect on disease, the ERβ agonist had minimal effects on immune responses. The use of selective estrogen receptor modulators (SERMs) in this model was also explored, and we show that raloxifene and WAY-138923 were also effective in suppressing disease. These results demonstrate the beneficial effects of estrogen receptor ligands, in particular ERα-selective ligands, and may have implications in the development of therapeutic strategies for multiple sclerosis.


2019 ◽  
Vol 335 ◽  
pp. 577007 ◽  
Author(s):  
Lucian Del Fabbro ◽  
Marcelo Gomes de Gomes ◽  
Leandro Cattelan Souza ◽  
André Rossito Goes ◽  
Silvana Peterini Boeira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document