scholarly journals Bimodal structural plasticity can explain the spacing effect in long-term memory tasks

Author(s):  
Knoblauch Andreas
Cell Reports ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 109369
Author(s):  
Supriya Swarnkar ◽  
Yosef Avchalumov ◽  
Isabel Espadas ◽  
Eddie Grinman ◽  
Xin-an Liu ◽  
...  

2017 ◽  
Vol 7 (9) ◽  
pp. e1228-e1228 ◽  
Author(s):  
X-X Wang ◽  
J-T Li ◽  
X-M Xie ◽  
Y Gu ◽  
T-M Si ◽  
...  

2021 ◽  
Vol 220 (6) ◽  
Author(s):  
Yanrui Yang ◽  
Jiang Chen ◽  
Xue Chen ◽  
Di Li ◽  
Jianfeng He ◽  
...  

Induction of long-term potentiation (LTP) in excitatory neurons triggers a large transient increase in the volume of dendritic spines followed by decays to sustained size expansion, a process termed structural LTP (sLTP) that contributes to the cellular basis of learning and memory. Although mechanisms regulating the early and sustained phases of sLTP have been studied intensively, how the acute spine enlargement immediately after LTP stimulation is achieved remains elusive. Here, we report that endophilin A1 orchestrates membrane dynamics with actin polymerization to initiate spine enlargement in NMDAR-mediated LTP. Upon LTP induction, Ca2+/calmodulin enhances binding of endophilin A1 to both membrane and p140Cap, a cytoskeletal regulator. Consequently, endophilin A1 rapidly localizes to the plasma membrane and recruits p140Cap to promote local actin polymerization, leading to spine head expansion. Moreover, its molecular functions in activity-induced rapid spine growth are required for LTP and long-term memory. Thus, endophilin A1 serves as a calmodulin effector to drive acute structural plasticity necessary for learning and memory.


2020 ◽  
Author(s):  
Supriya Swarnkar ◽  
Yosef Avchalumov ◽  
Xin-an Liu ◽  
Bindu Raveendra ◽  
Isabel Espadas ◽  
...  

Memory ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Matthew C. Bell ◽  
Nader Kawadri ◽  
Patricia M. Simone ◽  
Melody Wiseheart

2002 ◽  
Vol 87 (6) ◽  
pp. 2770-2777 ◽  
Author(s):  
Matthew T. Scharf ◽  
Newton H. Woo ◽  
K. Matthew Lattal ◽  
Jennie Z. Young ◽  
Peter V. Nguyen ◽  
...  

Spaced training is generally more effective than massed training for learning and memory, but the molecular mechanisms underlying this trial spacing effect remain poorly characterized. One potential molecular basis for the trial spacing effect is the differential modulation, by distinct temporal patterns of neuronal activity, of protein synthesis-dependent processes that contribute to the expression of specific forms of synaptic plasticity in the mammalian brain. Long-term potentiation (LTP) is a type of synaptic modification that may be important for certain forms of memory storage in the mammalian brain. To explore the role of protein synthesis in the trial spacing effect, we assessed the protein synthesis dependence of hippocampal LTP induced by 100-Hz tetraburst stimulation delivered to mouse hippocampal slices in either a temporally massed (20-s interburst interval) or spaced (5-min interburst interval) fashion. To extend our studies to the behavioral level, we trained mice in fear conditioning using either a massed or spaced training protocol and examined the sensitivity of long-term memory to protein synthesis inhibition. Larger LTP was induced by spaced stimulation in hippocampal slices. This improvement of synaptic potentiation following temporally spaced synaptic stimulation in slices was attenuated by bath application of an inhibitor of protein synthesis. Further, the maintenance of LTP induced by spaced synaptic stimulation was more sensitive to disruption by anisomycin than the maintenance of LTP elicited following massed stimulation. Temporally spaced behavioral training improved long-term memory for contextual but not for cued fear conditioning, and this enhancement of memory for contextual fear was also protein synthesis dependent. Our data reveal that altering the temporal spacing of synaptic stimulation and behavioral training improved hippocampal LTP and enhanced contextual long-term memory. From a broad perspective, these results suggest that the recruitment of protein synthesis-dependent processes important for long-term memory and for long-lasting forms of LTP can be modulated by the temporal profiles of behavioral training and synaptic stimulation.


2019 ◽  
Vol 31 (11) ◽  
pp. 2212-2251 ◽  
Author(s):  
Terry Elliott

Repeated stimuli that are spaced apart in time promote the transition from short- to long-term memory, while massing repetitions together does not. Previously, we showed that a model of integrative synaptic plasticity, in which plasticity induction signals are integrated by a low-pass filter before plasticity is expressed, gives rise to a natural timescale at which to repeat stimuli, hinting at a partial account of this spacing effect. The account was only partial because the important role of neuromodulation was not considered. We now show that by extending the model to allow dynamic integrative synaptic plasticity, the model permits synapses to robustly discriminate between spaced and massed repetition protocols, suppressing the response to massed stimuli while maintaining that to spaced stimuli. This is achieved by dynamically coupling the filter decay rate to neuromodulatory signaling in a very simple model of the signaling cascades downstream from cAMP production. In particular, the model's parameters may be interpreted as corresponding to the duration and amplitude of the waves of activity in the MAPK pathway. We identify choices of parameters and repetition times for stimuli in this model that optimize the ability of synapses to discriminate between spaced and massed repetition protocols. The model is very robust to reasonable changes around these optimal parameters and times, but for large changes in parameters, the model predicts that massed and spaced stimuli cannot be distinguished or that the responses to both patterns are suppressed. A model of dynamic integrative synaptic plasticity therefore explains the spacing effect under normal conditions and also predicts its breakdown under abnormal conditions.


Sign in / Sign up

Export Citation Format

Share Document