local translation
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 86)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Andrew D. Esteves ◽  
Orkide O. Koyuncu ◽  
Lynn W. Enquist

Infection of peripheral axons by alpha herpesviruses (AHVs) is a critical stage in establishing a life-long infection in the host. Upon entering the cytoplasm of axons, AHV nucleocapsids and associated inner-tegument proteins must engage the cellular retrograde transport machinery to promote the long-distance movement of virion components to the nucleus. The current model outlining this process is incomplete and further investigation is required to discover all viral and cellular determinants involved as well as the temporality of the events. Using a modified tri-chamber system, we have discovered a novel role of the pseudorabies virus (PRV) serine/threonine kinase, US3, in promoting efficient retrograde transport of nucleocapsids. We discovered that transporting nucleocapsids move at similar velocities both in the presence and absence of a functional US3 kinase; however fewer nucleocapsids are moving when US3 is absent and move for shorter periods of time before stopping, suggesting US3 is required for efficient nucleocapsid engagement with the retrograde transport machinery. This led to fewer nucleocapsids reaching the cell bodies to produce a productive infection 12hr later. Furthermore, US3 was responsible for the induction of local translation in axons as early as 1hpi through the stimulation of a PI3K/Akt-mToRC1 pathway. These data describe a novel role for US3 in the induction of local translation in axons during AHV infection, a critical step in transport of nucleocapsids to the cell body. Importance Neurons are highly polarized cells with axons that can reach centimeters in length. Communication between axons at the periphery and the distant cell body is a relatively slow process involving the active transport of chemical messengers. There’s a need for axons to respond rapidly to extracellular stimuli. Translation of repressed mRNAs present within the axon occurs to enable rapid, localized responses independently of the cell body. AHVs have evolved a way to hijack local translation in the axons to promote their transport to the nucleus. We have determined the cellular mechanism and viral components involved in the induction of axonal translation. The US3 serine/threonine kinase of PRV activates Akt-mToRC1 signaling pathways early during infection to promote axonal translation. When US3 is not present, the number of moving nucleocapsids and their processivity are reduced, suggesting that US3 activity is required for efficient engagement of nucleocapsids with the retrograde transport machinery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Hao ◽  
Yawen Chen ◽  
Xiumin Yan ◽  
Xueliang Zhu

AbstractCilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.


2021 ◽  
Author(s):  
Xinyu Gu ◽  
Nicholas P. Schafer ◽  
Carlos Bueno ◽  
Wei Lu ◽  
Peter G. Wolynes

A prion-like RNA-binding protein, CPEB3, can regulate local translation in dendritic spines. CPEB3 monomers repress translation, whereas CPEB3 aggregates activate translation of its target mRNAs. However, the CPEB3 aggregates, as long-lasting prions, may raise the problem of unregulated translational activation. Here, we propose a computational model of the complex structure between CPEB3 RNA-binding domain (CPEB3-RBD) and small ubiquitin-like modifier protein 2 (SUMO2). Free energy calculations suggest that the allosteric effect of CPEB3-RBD/SUMO2 interaction can amplify the RNA-binding affinity of CPEB3. Combining with previous experimental observations on the SUMOylation mode of CPEB3, this model suggests an equilibrium shift of mRNA from binding to deSUMOylated CPEB3 aggregates to binding to SUMOylated CPEB3 monomers in basal synapses. This work shows how a burst of local translation in synapses can be silenced following a stimulation pulse, and explores the CPEB3/SUMO2 interplay underlying the structural change of synapses and the formation of long-term memories.


2021 ◽  
Vol 134 (22) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Chunchu Deng is co-first author on ‘ Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons’, published in Journal of Cell Science. Chunchu is a PhD Student in the lab of Professor Michael Sendtner at the Institute of Clinical Neurobiology, University Hospital Würzburg, Germany, investigating the dynamics of the endoplasmic reticulum and local translation in motoneurons, and their involvement in motoneuron diseases.


2021 ◽  
Author(s):  
Andrew D. Esteves ◽  
Orkide O Koyuncu ◽  
Lynn W. Enquist

Infection of peripheral axons by alpha herpesviruses (AHVs) is a critical stage in establishing a life-long infection in the host. Upon entering the cytoplasm of axons, AHV nucleocapsids and associated inner-tegument proteins must engage the cellular retrograde transport machinery to promote the long-distance movement of virion components to the nucleus. The current model outlining this process is incomplete and further investigation is required to discover all viral and cellular determinants involved as well as the temporality of the events. Using a modified tri-chamber system, we have discovered a novel role of the pseudorabies virus (PRV) serine/threonine kinase, US3, in promoting efficient retrograde transport of nucleocapsids. We discovered that transporting nucleocapsids move at similar velocities both in the presence and absence of a functional US3 kinase; however fewer nucleocapsids are moving when US3 is absent and move for shorter periods of time before stopping, suggesting US3 is required for efficient nucleocapsid engagement with the retrograde transport machinery. This led to fewer nucleocapsids reaching the cell bodies to produce a productive infection 12hr later. Furthermore, US3 was responsible for the induction of local translation in axons as early as 1hpi through the stimulation of a PI3K/Akt-mToRC1. These data describe a novel role for US3 in the induction of local translation in axons during AHV infection, a critical step in transport of nucleocapsids to the cell body.


Author(s):  
Jessica Mitchell ◽  
Jeffrey A. Chao

Memory-relevant neuronal plasticity is believed to require local translation of new proteins at synapses. Understanding this process has necessitated the development of tools to visualize mRNA within relevant neuronal compartments. In this review, we summarize the technical developments that now enable mRNA transcripts and their translation to be visualized at single-molecule resolution in both fixed and live cells. These tools include single-molecule fluorescence in situ hybridization (smFISH) to visualize mRNA in fixed cells, MS2/PP7 labelling for live mRNA imaging and SunTag labelling to observe the emergence of nascent polypeptides from a single translating mRNA. The application of these tools in cultured neurons and more recently in whole brains promises to revolutionize our understanding of local translation in the neuronal plasticity that underlies behavioural change.


2021 ◽  
Vol 14 ◽  
Author(s):  
Manasi Agrawal ◽  
Kristy Welshhans

In the past two decades, significant progress has been made in our understanding of mRNA localization and translation at distal sites in axons and dendrites. The existing literature shows that local translation is regulated in a temporally and spatially restricted manner and is critical throughout embryonic and post-embryonic life. Here, recent key findings about mRNA localization and local translation across the various stages of neural development, including neurogenesis, axon development, and synaptogenesis, are reviewed. In the early stages of development, mRNAs are localized and locally translated in the endfeet of radial glial cells, but much is still unexplored about their functional significance. Recent in vitro and in vivo studies have provided new information about the specific mechanisms regulating local translation during axon development, including growth cone guidance and axon branching. Later in development, localization and translation of mRNAs help mediate the major structural and functional changes that occur in the axon during synaptogenesis. Clinically, changes in local translation across all stages of neural development have important implications for understanding the etiology of several neurological disorders. Herein, local translation and mechanisms regulating this process across developmental stages are compared and discussed in the context of function and dysfunction.


2021 ◽  
Author(s):  
Benjamin D Hobson ◽  
Linghao Kong ◽  
Maria Florencia Angelo ◽  
Ori J Lieberman ◽  
Eugene V Mosharov ◽  
...  

Local translation within excitatory and inhibitory neurons is involved in neuronal development and synaptic plasticity. Despite the extensive dendritic and axonal arborizations of central monoaminergic neurons, the subcellular localization of protein synthesis is not well-characterized in these populations. Here, we investigated mRNA localization and translation in midbrain dopaminergic (mDA) neurons, cells with enormous axonal and dendritic projections, both of which exhibit stimulation-evoked dopamine (DA) release. Using highly-sensitive ribosome-bound RNA-sequencing and imaging approaches in mDA axons, we found no evidence for axonal mRNA localization or translation. In contrast, mDA neuronal dendritic projections into the substantia nigra reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observed dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in vesicular exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data further defined a molecular signature of the sparse mDA neurons resident in the SNr, including enrichment of Atp2a3/SERCA3, an ER calcium pump previously undescribed in mDA neurons.


Sign in / Sign up

Export Citation Format

Share Document