scholarly journals Accounting for Biomechanical Measures from Musculoskeletal Simulation of Upright Posture Does Not Enhance the Prediction of Curve Progression in Adolescent Idiopathic Scoliosis

Author(s):  
Tito Bassani ◽  
Andrea Cina ◽  
Dominika Ignasiak ◽  
Noemi Barba ◽  
Fabio Galbusera

A major clinical challenge in adolescent idiopathic scoliosis (AIS) is the difficulty of predicting curve progression at initial presentation. The early detection of progressive curves can offer the opportunity to better target effective non-operative treatments, reducing the need for surgery and the risks of related complications. Predictive models for the detection of scoliosis progression in subjects before growth spurt have been developed. These models accounted for geometrical parameters of the global spine and local descriptors of the scoliotic curve, but neglected contributions from biomechanical measurements such as trunk muscle activation and intervertebral loading, which could provide advantageous information. The present study exploits a musculoskeletal model of the thoracolumbar spine, developed in AnyBody software and adapted and validated for the subject-specific characterization of mild scoliosis. A dataset of 100 AIS subjects with mild scoliosis and in pre-pubertal age at first examination, and recognized as stable (60) or progressive (40) after at least 6-months follow-up period was exploited. Anthropometrical data and geometrical parameters of the spine at first examination, as well as biomechanical parameters from musculoskeletal simulation replicating relaxed upright posture were accounted for as predictors of the scoliosis progression. Predicted height and weight were used for model scaling because not available in the original dataset. Robust procedure for obtaining such parameters from radiographic images was developed by exploiting a comparable dataset with real values. Six predictive modelling approaches based on different algorithms for the binary classification of stable and progressive cases were compared. The best fitting approaches were exploited to evaluate the effect of accounting for the biomechanical parameters on the prediction of scoliosis progression. The performance of two sets of predictors was compared: accounting for anthropometrical and geometrical parameters only; considering in addition the biomechanical ones. Median accuracy of the best fitting algorithms ranged from 0.76 to 0.78. No differences were found in the classification performance by including or neglecting the biomechanical parameters. Median sensitivity was 0.75, and that of specificity ranged from 0.75 to 0.83. In conclusion, accounting for biomechanical measures did not enhance the prediction of curve progression, thus not supporting a potential clinical application at this stage.

2021 ◽  
pp. 1-10
Author(s):  
Tomohiro Banno ◽  
Yu Yamato ◽  
Hiroki Oba ◽  
Tetsuro Ohba ◽  
Tomohiko Hasegawa ◽  
...  

OBJECTIVE L3 is most often selected as the lowest instrumented vertebra (LIV) to conserve mobile segments in fusion surgery; however, in cases with the lowest end vertebra (LEV) at L4, LIV selection as L3 could have a potential risk of correction loss and coronal decompensation. This study aimed to compare the clinical and radiographic outcomes depending on the LEV in adolescent idiopathic scoliosis (AIS) patients with Lenke type 5C curves. METHODS Data from 49 AIS patients with Lenke type 5C curves who underwent selective thoracolumbar/lumbar (TL/L) fusion to L3 as the LIV were retrospectively analyzed. The patients were classified according to their LEVs into L3 and L4 groups. In the L4 group, subanalysis was performed according to the upper instrumented vertebra (UIV) level toward the upper end vertebra (UEV and 1 level above the UEV [UEV+1] subgroups). Radiographic parameters and clinical outcomes were compared between these groups. RESULTS Among 49 patients, 32 and 17 were in the L3 and L4 groups, respectively. The L4 group showed a lower TL/L curve correction rate and a higher subjacent disc angle postoperatively than the L3 group. Although no intergroup difference was observed in coronal balance (CB), the L4 group showed a significantly higher main thoracic (MT) and TL/L curve progression during the postoperative follow-up period than the L3 group. In the L4 group, the UEV+1 subgroup showed a higher absolute value of CB at 2 years than the UEV subgroup. CONCLUSIONS In Lenke type 5C AIS patients with posterior selective TL/L fusion to L3 as the LIV, patients with their LEVs at L4 showed postoperative MT and TL/L curve progression; however, no significant differences were observed in global alignment and clinical outcome.


2018 ◽  
Vol 103 ◽  
pp. 34-43 ◽  
Author(s):  
Edgar García-Cano ◽  
Fernando Arámbula Cosío ◽  
Luc Duong ◽  
Christian Bellefleur ◽  
Marjolaine Roy-Beaudry ◽  
...  

2020 ◽  
Vol 102-B (2) ◽  
pp. 254-260 ◽  
Author(s):  
Jason P. Y. Cheung ◽  
Prudence W. H. Cheung

Aims The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute error in thoracic curves (0.61) as compared to lumbar curves (1.04). Reduced age and Risser stage, thoracic curves, increased pre-brace Cobb angle, and reduced correction and flexibility rates predicted increased likelihood of curve progression. Flexibility rate of more than 28% has likelihood of preventing curve progression with bracing. Conclusion Supine radiographs provide satisfactory prediction for in-brace correction and post-bracing curve magnitude. The flexibility of the curve is a guide to determine the likelihood for brace success. Cite this article: Bone Joint J 2020;102-B(2):254–260.


EBioMedicine ◽  
2018 ◽  
Vol 36 ◽  
pp. 489-496 ◽  
Author(s):  
Yichen Meng ◽  
Tao Lin ◽  
Shulun Liang ◽  
Rui Gao ◽  
Heng Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document