scholarly journals Time-Dependent Internalization of S100B by Mesenchymal Stem Cells via the Pathways of Clathrin- and Lipid Raft-Mediated Endocytosis

Author(s):  
Ying Zhang ◽  
Jing Zhu ◽  
Hao Xu ◽  
Qin Yi ◽  
Liang Yan ◽  
...  

Mesenchymal stem cells (MSCs) are promising tools for cancer therapy, but there is a risk of malignant transformation in their clinical application. Our previous work revealed that the paracrine protein S100B in the glioma microenvironment induces malignant transformation of MSCs and upregulates intracellular S100B, which could affect cell homeostasis by interfering with p53. The purpose of this study was to investigate whether extracellular S100B can be internalized by MSCs and the specific endocytic pathway involved in S100B internalization. By using real-time confocal microscopy and structured illumination microscopy (SIM), we visualized the uptake of fluorescently labeled S100B protein (S100B-Alexa488) and monitored the intracellular trafficking of internalized vesicles. The results showed that S100B-Alexa488 was efficiently internalized into MSCs in a time-dependent manner and transported through endolysosomal pathways. After that, we used chemical inhibitors and RNA interference approaches to investigate possible mechanisms involved in S100B-Alexa488 uptake. The internalization of S100B-Alexa488 was inhibited by pitstop-2 or dyngo-4a treatment or RNA-mediated silencing of clathrin or dynamin, and the lipid raft-mediated endocytosis inhibitors nystatin and MβCD. In conclusion, our findings show that clathrin and lipid rafts contribute to the internalization of S100B-Alexa488, which provides promising interventions for the safe application of MSCs in glioma therapy.

2014 ◽  
Vol 10 (4) ◽  
pp. 2184-2190 ◽  
Author(s):  
HAO DING ◽  
SONG CHEN ◽  
JUN-HUI YIN ◽  
XUE-TAO XIE ◽  
ZHEN-HONG ZHU ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1450-1450
Author(s):  
Lizhen Liu ◽  
Qin Yu ◽  
Jie Lin ◽  
Weijie Cao ◽  
Xiaoyu Lai ◽  
...  

Abstract Abstract 1450 Background: Mesenchymal stem cells (MSCs) constitute a population of multipotential cells giving rise to adipocytes, osteoblasts and chondrocytes. Combining with their engraftment promoting capacity and immunosuppressive property, MSCs may be therapeutically useful for haematopoietic stem cell transplantation. There is growing evidence that these cells can, under the right circumstances, enter peripheral circulation. Previous study revealed that MSCs are mobilized into peripheral blood (PB) by 3 weeks of chronic hypoxia, but the mobilization effect of short-term hypoxia and the underlying mechanisms are currently unknown. In this study, we used rat model to determine whether short-term hypoxia can mobilize MSCs into PB and investigated the related factors which may regulate the mobilization process. Design and Methods: Rats were housed in a hypoxic chamber (FiO2=10%) for 1, 2, 3, 5, 7 and 14 days, respectively, while control ones were housed in normoxic environment for equal periods. To quantify the number of MSCs and evaluate mobilization efficiency, PB and bone barrow (BM) samples of each group were collected and colony-forming unit fibroblast (CFU-F) assays were performed. Mobilized PB derived MSCs were identified by immunophenotype and trilineage differentiation. Since BM is the main reservoir and typical microenvironment of MSCs, we investigated the response of BM environment exposed to hypoxia which may potentially facilitate MSCs mobilization. Hypoxia-inducible factor 1α (HIF-1α) expression of BM cells was detected by Western blot; vascular endothelial growth factor (VEGF) in BM was qualified by ELISA and Immunohistochemistry (IHC). To evaluate the change of BM sinusoid vessels (BMSVs), VEGFR3 was stained by IHC and positive vessels were counted. The levels of stromal cell-derived factor-1α (SDF-1α) and VEGF in PB were tested by ELISA. Moreover, we compared migration capacity of MSCs in hypoxic condition (PO2=1% or 8%) with normal condition (PO2=21%) in vitro using Transwell assay. Results: We found that MSCs were mobilized into PB by exposing to short-term hypoxia (2d) and the CFU-F frequency was 5.80±0.58 vs. 1.40±0.24 CFU-Fs per 3×106 cells (p<0.05, n=5). From 2d to 14d of hypoxic exposure, the number of CFU-Fs mobilized in PB of hypoxic group was gradually increased in a time dependent manner. However, no significant differences were observed in bone marrow CFU-Fs among varies groups (P>0.05). Mobilized PB derived adherent cells were positive for CD90, CD29 and CD44, but negative for CD34 and CD45 and they could differentiate into adipocyte, osteoblast, and chondrocyte, which indicated that mobilized PB-derived cells are bona fide MSCs. What's more, we showed here that during hypoxic exposure, HIF-1α was stabilized and expressed continuously in BM of rats which is a main niche of MSCs. Stabilization and up-regulation of HIF-1α suggested that BM is hypoxia-sensitive and during hypoxic exposure it became a lower oxygen environment (PO2<1%). Previous studies have proved that VEGF and SDF-1α are directly regulated by the transcription factor HIF-1α. Our results showed that, induced by HIF-1α, VEGF was elevated from 2d to 7d in the BM of hypoxic rats which may increase BM vascular permeability and induce vasodilatation; VEGFR3(+) BMSVs increased in 7d and 14d hypoxic BM which may further facilitate the egress of MSCs. SDF-1α in PB increased from 2d to 14d, especially 7d of hypoxia (1976.7±148.1 vs. 663.6±56.7pg/ml, P<0.01). In addition, exposure of MSCs to low oxygen (8% PO2) significantly promoted their in vitro migration and a further increase was observed under lower oxygen condition (1% PO2). MSCs migrated more rapidly in response to SDF-1α exposed to hypoxia. Conclusion: Taken together, we show here that MSCs can be mobilized into PB by short-term hypoxia and the mobilization efficacy increased in a time dependent manner. Our results suggest the mechanisms of hypoxia inducing MSCs mobilization relate to the lower oxygen milieu of BM and stabilization of HIF-1α may play a pivotal role in MSCs mobilization. Our data provide meaningful clues to clarify the mechanisms of MSCs mobilization and important evidence for further exploring the exact agents that of clinical use. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 35 (10) ◽  
pp. 1700-1711 ◽  
Author(s):  
Fenfang Chen ◽  
Xia Lin ◽  
Pinglong Xu ◽  
Zhengmao Zhang ◽  
Yanzhen Chen ◽  
...  

Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.


Cytotherapy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. S75-S76
Author(s):  
Y. Wang ◽  
Z. Han ◽  
Z. Zhang ◽  
Y. Chi ◽  
Z. Yang ◽  
...  

2010 ◽  
Vol 188 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Shujuan Zhang ◽  
Zhijuan Han ◽  
Qingfei Kong ◽  
Jinghua Wang ◽  
Bo Sun ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yinzhong Ma ◽  
Lisha Wang ◽  
Shilun Yang ◽  
Dongyu Liu ◽  
Yi Zeng ◽  
...  

Abstract Background The therapeutic efficacy of mesenchymal stem cells (MSCs) of different tissue origins on metabolic disorders can be varied in many ways but remains poorly defined. Here we report a comprehensive comparison of human MSCs derived from umbilical cord Wharton’s jelly (UC-MSCs), dental pulp (PU-MSCs), and adipose tissue (AD-MSCs) on the treatment of glucose and lipid metabolic disorders in type II diabetic mice. Methods Fourteen-to-fifteen-week-old male C57BL/6 db/db mice were intravenously administered with human UC-MSCs, PU-MSCs, and AD-MSCs at various doses or vehicle control once every 2 weeks for 6 weeks. Metformin (MET) was given orally to animals in a separate group once a day at weeks 4 to 6 as a positive control. Body weight, blood glucose, and insulin levels were measured every week. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed every 2 weeks. All the animals were sacrificed at week 6 and the blood and liver tissues were collected for biochemical and histological examinations. Results UC-MSCs showed the strongest efficacy in reducing fasting glucose levels, increasing fasting insulin levels, and improving GTT and ITT in a dose-dependent manner, whereas PU-MSCs showed an intermediate efficacy and AD-MSCs showed the least efficacy on these parameters. Moreover, UC-MSCs also reduced the serum low-density lipoprotein cholesterol (LDL-C) levels with the most prominent potency and AD-MSCs had only very weak effect on LDL-C. In contrast, AD-MSCs substantially reduced the lipid content and histological lesion of liver and accompanying biomarkers of liver injury such as serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, whereas UC-MSCs and PU-MSCs displayed no or modest effects on these parameters, respectively. Conclusions Taken together, our results demonstrated that MSCs of different tissue origins can confer substantially different therapeutic efficacy in ameliorating glucose and lipid metabolic disorders in type II diabetes. MSCs with different therapeutic characteristics could be selected according to the purpose of the treatment in the future clinical practice.


Author(s):  
Kambiz Gilany ◽  
Parisa Goodarzi ◽  
Akram Tayanloo-Beik ◽  
Mohammad Javad Masroor ◽  
Ahmad Mani-Varnosfaderani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document