scholarly journals Corrigendum: Hepatoma Cell-Derived Extracellular Vesicles Promote Liver Cancer Metastasis by Inducing the Differentiation of Bone Marrow Stem Cells Through microRNA-181d-5p and the FAK/Src Pathway

Author(s):  
Huamei Wei ◽  
Jianchu Wang ◽  
Zuoming Xu ◽  
Wenchuan Li ◽  
Xianjian Wu ◽  
...  
Author(s):  
Huamei Wei ◽  
Jianchu Wang ◽  
Zuoming Xu ◽  
Wenchuan Li ◽  
Xianjian Wu ◽  
...  

Bone marrow mesenchymal stem cells (BMSCs) are beneficial to repair the damaged liver. Tumor-derived extracellular vesicles (EV) are notorious in tumor metastasis. But the mechanism underlying hepatoma cell-derived EVs in BMSCs and liver cancer remains unclear. We hypothesize that hepatoma cell-derived EVs compromise the effects of BMSCs on the metastasis of liver cancer. The differentially expressed microRNAs (miRNAs) were screened. HepG2 cells were transfected with miR-181d-5p mimic or inhibitor, and the EVs were isolated and incubated with BMSCs to evaluate the differentiation of BMSCs into fibroblasts. Hepatoma cells were cultured with BMSCs conditioned medium (CM) treated with HepG2-EVs to assess the malignant behaviors of hepatoma cells. The downstream genes and pathways of miR-181d-5p were analyzed and their involvement in the effect of EVs on BMSC differentiation was verified through functional rescue experiments. The nude mice were transplanted with BMSCs-CM or BMSCs-CM treated with HepG2-EVs, and then tumor growth and metastasis in vivo were assessed. HepG2-EVs promoted fibroblastic differentiation of BMSCs, and elevated levels of α-SMA, vimentin, and collagen in BMSCs. BMSCs-CM treated with HepG2-EVs stimulated the proliferation, migration, invasion and epithelial-mesenchymal-transition (EMT) of hepatoma cells. miR-181d-5p was the most upregulated in HepG2-EVs-treated BMSCs. miR-181d-5p targeted SOCS3 to activate the FAK/Src pathway and SOCS3 overexpression inactivated the FAK/Src pathway. Reduction of miR-181d-5p in HepG2-EVs or SOCS3 overexpression reduced the differentiation of BMSCs into fibroblasts, and compromised the promoting effect of HepG2-EVs-treated BMSCs-CM on hepatoma cells. In vivo, HepG2-EVs-treated BMSCs facilitated liver cancer growth and metastasis. In conclusion, HepG2-EVs promote the differentiation of BMSCs, and promote liver cancer metastasis through the delivery of miR-181d-5p and the SOCS3/FAK/Src pathway.


Aging ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1791-1803 ◽  
Author(s):  
Sadanand Fulzele ◽  
Bharati Mendhe ◽  
Andrew Khayrullin ◽  
Maribeth Johnson ◽  
Helen Kaiser ◽  
...  

2008 ◽  
Vol 48 ◽  
pp. S154-S155
Author(s):  
M. Novi ◽  
E. Rinninella ◽  
A.C. Piscaglia ◽  
E.C. Lauritano ◽  
M.A. Zocco ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A62-A62
Author(s):  
S FORBES ◽  
M ALISON ◽  
K HODIVALADILKE ◽  
R JEFFERY ◽  
R POULSOM ◽  
...  

2008 ◽  
Vol 7 ◽  
pp. 114-115
Author(s):  
R AKCHURIN ◽  
T RAKHMATZADE ◽  
E SKRIDLEVSKAYA ◽  
L SAMOYLENKO ◽  
V SERGIENKO ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wen-Ching Tzaan ◽  
Hsien-Chih Chen

Intervertebral disc (IVD) degeneration is a multifactorial process that is influenced by contributions from genetic predisposition, the aging phenomenon, lifestyle conditions, biomechanical loading and activities, and other health factors (such as diabetes). Attempts to decelerate disc degeneration using various techniques have been reported. However, to date, there has been no proven technique effective for broad clinical application. Granulocyte colony-stimulating factor (GCSF) is a growth factor cytokine that has been shown to enhance the availability of circulating hematopoietic stem cells to the brain and heart as well as their capacity for mobilization of mesenchymal bone marrow stem cells. GCSF also exerts significant increases in circulating neutrophils as well as potent anti-inflammatory effects. In our study, we hypothesize that GCSF can induce bone marrow stem cells differentiation and mobilization to regenerate the degenerated IVD. We found that GCSF had no contribution in disc regeneration or maintenance; however, there were cell proliferation within end plates. The effects of GCSF treatment on end plates might deserve further investigation.


Sign in / Sign up

Export Citation Format

Share Document