scholarly journals Protein- and Cell-Resistance of Zwitterionic Peptide-Based Self-Assembled Monolayers: Anti-Biofouling Tests and Surface Force Analysis

2021 ◽  
Vol 9 ◽  
Author(s):  
Ryongsok Chang ◽  
Evan Angelo Quimada Mondarte ◽  
Debabrata Palai ◽  
Taito Sekine ◽  
Aki Kashiwazaki ◽  
...  

Peptide-based self-assembled monolayers (peptide-SAMs) with specific zwitterionic amino acid sequences express an anti-biofouling property. In this work, we performed protein adsorption and cell adhesion tests using peptide-SAMs with repeating units of various zwitterionic pairs of amino acids (EK, DK, ER, and DR). The SAMs with the repeating units of EK and DK (EK and DK SAMs) manifested excellent bioinertness, whereas the SAMs with the repeating units of ER and DR (ER and DR SAMs) adhered proteins and cells. We also performed surface force measurements using atomic force microscopy to elucidate the mechanism underlying the difference in the anti-biofouling property. Our measurements revealed that water-induced repulsion with a range of about 8 nm acts between EK SAMs (immobilized on both probe and substrate) and DK SAMs, whereas such repulsion was not observed for ER and DR SAMs. The strength of the repulsion exhibited a clear correlation with the protein- and cell-resistance of the SAMs, indicating that the interfacial water in the vicinity of EK and DK SAMs is considered as a physical barrier to deter protein and cells from their adsorption or adhesion. The range of the repulsion observed for EK and DK SAMs is longer than 8 nm, indicating that the hydrogen bonding state of the interfacial water with a thickness of 4 nm is modified by EK and DK SAMs, resulting in the expression of the anti-biofouling property.

2008 ◽  
Vol 373-374 ◽  
pp. 472-475 ◽  
Author(s):  
C.G. Sun ◽  
Hui Chen Zhang

In this work, the self-assembled monolayers of γ-aminopropyltrimethoxysilane and octadecyltrichlorosilane were prepared on titanium films, radiated and solidified by ultraviolet radiation/ozone photochemical process. The characterization and friction properties of titanium film, APS SAMs, OTS SAMs and the radiated APS SAMs, OTS SAMs were explored by atomic force microscopy and friction force microscopy. The effects of functional groups, sliding velocity, load and ultraviolet radiation/ozone photochemical process on friction properties of SAMs were analyzed. The experimental results show that the titanium film coated with SAMs, especially under ultraviolet radiation/ozone, is exhibited with a good friction property. The friction property of APS SAMs is better than OTS SAMs under or no ultraviolet radiation/ozone. The friction force increases with the increasing of sliding velocity and decreases with the increasing of load.


2017 ◽  
Vol 28 (45) ◽  
pp. 455603 ◽  
Author(s):  
Hitoshi Asakawa ◽  
Natsumi Inada ◽  
Kaito Hirata ◽  
Sayaka Matsui ◽  
Takumi Igarashi ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 2449-2458
Author(s):  
Zhihua Fu ◽  
Tatjana Ladnorg ◽  
Hartmut Gliemann ◽  
Alexander Welle ◽  
Asif Bashir ◽  
...  

We present a new approach to study charge transport within 2D layers of organic semi-conductors (OSCs) using atomic force microscopy (AFM)-based lithography applied to self-assembled monolayers (SAMs), fabricated from appropriate organothiols. The extent of lateral charge transport was investigated by insulating pre-defined patches within OSC-based SAMs with regions of insulating SAM made from large band gap alkanethiolates. The new method is demonstrated using a phenyl-linked anthracenethiolate (PAT), 4-(anthracene-2-ylethynyl)benzyl thiolate. I–V characteristics of differently shaped PAT-islands were measured using the AFM tip as a top electrode. We were able to determine a relationship between island size and electrical conductivity, and from this dependence, we could obtain information on the lateral charge transport and charge carrier mobility within the thin OSC layers. Our study demonstrates that AFM nanografting of appropriately functionalized OSC molecules provides a suitable method to determine intrinsic mobilities of charge carriers in OSC thin films. In particular, this method is rather insensitive with regard to influence of grain boundaries and other defects, which hamper the application of conventional methods for the determination of mobilities in macroscopic samples.


Sign in / Sign up

Export Citation Format

Share Document