scholarly journals Tannic Acid as a Natural Crosslinker for Catalyst-Free Silicone Elastomers From Hydrogen Bonding to Covalent Bonding

2021 ◽  
Vol 9 ◽  
Author(s):  
Sen Kong ◽  
Rui Wang ◽  
Shengyu Feng ◽  
Dengxu Wang

The construction of silicone elastomers crosslinked by a natural crosslinker under a catalyst-free method is highly desirable. Herein we present catalyst-free silicone elastomers (SEs) by simply introducing tannic acid (TA) as a natural crosslinker when using poly (aminopropylmethylsiloxane-co-dimethylsiloxane) (PAPMS) as the base polymer. The crosslinked bonding of these SEs can be easily changed from hydrogen bonding to covalent bonding by altering the curing reaction from room temperature to heating condition. The formability and mechanical properties of the SEs can be tuned by altering various factors, including processing technique, the amount of TA and aminopropyl-terminated polydimethylsiloxane, the molecular weight and -NH2 content of PAPMS, and the amount of reinforcing filler. The hydrogen bonding was proved by the reversible crosslinking of the elastomers, which can be gradually dissolved in tetrahydrofuran and re-formed after removing the solvent. The covalent bonding was proved by a model reaction of catechol and n-decylamine and occurred through a combination of hydroxylamine reaction and Michael addition reaction. These elastomers exhibit good thermal stability and excellent hydrophobic property and can bond iron sheets to hold the weight of 500 g, indicating their promising as adhesives. These results reveal that TA as a natural product is a suitable “green” crosslinker for the construction of catalyst-free silicone elastomers by a simple crosslinking strategy. Under this strategy, TA and more natural polyphenols could be certainly utilized as crosslinkers to fabricate more organic elastomers by selecting amine-containing polymers and further explore their extensive applications in adhesives, sealants, insulators, sensors, and so forth.

2021 ◽  
Author(s):  
Wenjing Li ◽  
Shun Li ◽  
Lihua Luo ◽  
Yichen Ge ◽  
Jiaqi Xu ◽  
...  

The catalyst-free oxidative cleavage of (Z)-triaryl-substituted alkenes bearing pyridyl motif with ambient air under irradiation of blue LED at room temperature has been developed. The reaction was facile and scalable,...


2021 ◽  
Vol 58 (5) ◽  
pp. 1179-1191
Author(s):  
Jinpeng Zhang ◽  
Jing Liu ◽  
Lei Dai ◽  
Yuqian Ge ◽  
Linlin Xu ◽  
...  

Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


1986 ◽  
Vol 90 (21) ◽  
pp. 4941-4945 ◽  
Author(s):  
Georg W. Suter ◽  
Alan J. Kallir ◽  
Urs P. Wild ◽  
Tuan Vo-Dinh

2006 ◽  
Vol 74 (22) ◽  
Author(s):  
H. Wu ◽  
W. Zhou ◽  
T. J. Udovic ◽  
J. J. Rush ◽  
T. Yildirim

IUCrData ◽  
2020 ◽  
Vol 5 (7) ◽  
Author(s):  
Kathleen S. Lee ◽  
Luke Turner ◽  
Cynthia B. Powell ◽  
Eric W. Reinheimer

The title compound, C16H14FNO3, was synthesized via solid phase methods; it exhibits monoclinic (P21) symmetry at room temperature. The two independent molecules that comprise the asymmetric unit display distinct torsion angles of 173.2 (2) and 72.6 (2)° along the central sp 3 C—N bond. In the crystal, hydrogen bonding through N—H...O contacts couples the asymmetric unit molecules into pairs that align in layers extending parallel to (100) via additional O—H...O interactions. The phenyl ring of one independent molecule was found to be disordered over two sets of sites in a 0.55 (3):0.45 (3) ratio.


1996 ◽  
Vol 425 ◽  
Author(s):  
H. Takatsu ◽  
H. Hasebe

AbstractSome classes of liquid crystalline monoacrylates having no methylene spacers in a side chain have been prepared. The liquid crystalline monoacrylates have effects to reduce the driving voltage and the hysteresis for a light scattering display of Polymer Network liquid crystals prepared by photo-polymerization-induced phase separation.By photo-polymerization of a chiral monoacrylate monomer in a nematic liquid crystalline host including a black dichroic dye, a polarizer free reflective Spiral Polymer Aligned Nematic (SPAN) Guest Host (GH) LCD exhibiting a low driving voltage has been fabricated. The effect of the spiral polymers made of some kinds of chiral monoacrylates for a Super Twisted Nematic (STN) LCD using SPAN liquid crystals is discussed.UV-curable liquid crystals showing nematic phases at room temperature have been developed. By in situ photo-polymerization, the UV-curable liquid crystals can be utilized for the retardation film with high quality and good thermal stability. The fabrication of various kinds of retardation film using the UV-curable liquid crystals is discussed.UV-curable liquid crystals having isotropic-nematic-smectic A phase sequence have been developed and the photo-polymerization at the state of their uniaxially oriented smectic A phases at room temperature is discussed. The polymerized film is optically uniaxial and transparent without light scattering.


2012 ◽  
Vol 51 (3) ◽  
pp. 644-652 ◽  
Author(s):  
Amanda S. Fawcett ◽  
John B. Grande ◽  
Michael A. Brook

ChemInform ◽  
2008 ◽  
Vol 39 (47) ◽  
Author(s):  
Janhavi J. Shrikhande ◽  
Manoj B. Gawande ◽  
Radha V. Jayaram

Synlett ◽  
2017 ◽  
Vol 28 (19) ◽  
pp. 2619-2623 ◽  
Author(s):  
Yunxia Wang ◽  
Na Cui ◽  
Yu Zhao

A catalyst-free oxidative [3+2] cycloaddition of phenols and styrenes was developed with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone as the oxidant and 1,1,1,3,3,3-hexafluoropropan-2-ol as the solvent at room temperature. With this method, a broad range of dihydrobenzofurans were efficiently and quickly obtained from readily available phenols and styrenes.


Sign in / Sign up

Export Citation Format

Share Document