scholarly journals Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium

Author(s):  
Patricia Cuellar ◽  
Elizabeth Hernández-Nava ◽  
Guillermina García-Rivera ◽  
Bibiana Chávez-Munguía ◽  
Michael Schnoor ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Bonggi Lee ◽  
Kyoung Mi Moon ◽  
Choon Young Kim

The intestine plays an essential role in integrating immunity and nutrient digestion and absorption. Adjacent intestinal epithelia form tight junctions (TJs) that are essential to the function of the physical intestinal barrier, regulating the paracellular movement of various substances including ions, solutes, and water across the intestinal epithelium. Studies have shown that TJ dysfunction is highly associated with metabolic and inflammatory diseases. Thus, molecular and nutritional factors that improve TJ activity have gained attention in the pharmaceutical and medicinal fields. This review focuses on the association between TJ and diverse pathological conditions, as well as various molecular and nutritional interventions designed to boost TJ integrity.


mBio ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Carol A. Gilchrist ◽  
Ellyn S. Moore ◽  
Yan Zhang ◽  
Christina B. Bousquet ◽  
Joanne A. Lannigan ◽  
...  

ABSTRACTIt is not understood why only some infections withEntamoeba histolyticaresult in disease. The calcium-regulated transcription factor upstream regulatory element 3-binding protein (URE3-BP) was initially identified by virtue of its role in regulating the expression of two amebic virulence genes, the Gal/GalNac lectin and ferredoxin. Here we tested whether this transcription factor has a broader role in regulating virulence. A comparison ofin vivotoin vitroparasite gene expression demonstrated that 39% ofin vivoregulated transcripts contained the URE3 motif recognized by URE3-BP, compared to 23% of all promoters (P< 0.0001). Amebae induced to express a dominant positive mutant form of URE3-BP had an increase in an elongated morphology (30% ± 6% versus 14% ± 5%;P= 0.001), a 2-fold competitive advantage at invading the intestinal epithelium (P= 0.017), and a 3-fold increase in liver abscess size (0.1 ± 0.1 g versus 0.036 ± 0.1 g;P= 0.03). These results support a role for URE3-BP in virulence regulation.IMPORTANCEAmebic dysentery and liver abscess are caused byEntamoeba histolytica. Amebae colonize the colon and cause disease by invading the intestinal epithelium. However, only one in fiveE. histolyticainfections leads to disease. The factors that govern the transition from colonization to invasion are not understood. The transcription factor upstream regulatory element 3-binding protein (URE3-BP) is a calcium-responding regulator of theE. histolyticaGal/GalNAc lectin and ferredoxin genes, both implicated in virulence. Here we discovered that inducible expression of URE3-BP changed trophozoite morphology and promoted parasite invasion in the colon and liver. These results indicate that one determinant of virulence is transcriptional regulation by URE3-BP.


2000 ◽  
Vol 31 (4) ◽  
pp. S218-S220 ◽  
Author(s):  
Ancy Leroy ◽  
Tineke Lauwaet ◽  
Marie-José Oliveira ◽  
Georges De Bruyne ◽  
Rivka Bracha ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Stefania Paola Bruno ◽  
Alessandro Paolini ◽  
Valentina D'Oria ◽  
Angelo Sarra ◽  
Simona Sennato ◽  
...  

It is widely acknowledged that mammalian exosomes (or extracellular vesicles), have a key role in intercellular communication, owing to the presence of various bioactive molecules such as lipids, proteins, and microRNAs within their inner compartment. Most recently, the discovery of extracellular vesicles isolated from edible plants (such as vegetables and fruits) and their similarity in terms of size and content with exosomes has opened new perspectives on possible intercellular communication and regulation of important biological processes in which these vesicles are involved. It is also well-known that a balanced diet rich of fruits and vegetables (i.e., the Mediterranean diet) can contribute to maintain a “healthy gut” by preserving the intestinal epithelial barrier integrity and avoid that inflammatory stimuli that can alter homeostasis. In our study, we optimized a method to isolate extracellular vesicles from the orange juice (Citrus sinensis) (CS-EVs), and we characterized their morphology and behavior when in contact with the intestinal epithelium. We showed that CS-EVs are stable in a simulated gastrointestinal environment and are absorbed by intestinal cells without toxic effects, as expected. Furthermore, we demonstrated that CS-EVs can alter the gene expression of several genes involved in inflammation (i.e., ICAM1 and HMOX-1) and tight junctions (i.e., OCLN, CLDN1, and MLCK), contributing to limit inflammatory stimuli and restore a functional barrier by increasing the tight junction OCLN protein. Therefore, our study emphasizes the relevant role of fruit-derived extracellular vesicles in modulating important biological processes and maintaining a healthy intestinal epithelium, ultimately promoting human health and well-being.


2010 ◽  
Vol 176 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Andrei I. Ivanov ◽  
Cheryl Young ◽  
Kyle Den Beste ◽  
Christopher T. Capaldo ◽  
Patrick O. Humbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document