scholarly journals Coronary Plaque Characterization From Optical Coherence Tomography Imaging With a Two-Pathway Cascade Convolutional Neural Network Architecture

2021 ◽  
Vol 8 ◽  
Author(s):  
Yifan Yin ◽  
Chunliu He ◽  
Biao Xu ◽  
Zhiyong Li

Background: The morphological structure and tissue composition of a coronary atherosclerotic plaque determine its stability, which can be assessed by intravascular optical coherence tomography (OCT) imaging. However, plaque characterization relies on the interpretation of large datasets by well-trained observers. This study aims to develop a convolutional neural network (CNN) method to automatically extract tissue features from OCT images to characterize the main components of a coronary atherosclerotic plaque (fibrous, lipid, and calcification). The method is based on a novel CNN architecture called TwopathCNN, which is utilized in a cascaded structure. According to the evaluation, this proposed method is effective and robust in the characterization of coronary plaque composition from in vivo OCT imaging. On average, the method achieves 0.86 in F1-score and 0.88 in accuracy. The TwopathCNN architecture and cascaded structure show significant improvement in performance (p < 0.05). CNN with cascaded structure can greatly improve the performance of characterization compared to the conventional CNN methods and machine learning methods. This method has a higher efficiency, which may be proven to be a promising diagnostic tool in the detection of coronary plaques.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter M. Maloca ◽  
Philipp L. Müller ◽  
Aaron Y. Lee ◽  
Adnan Tufail ◽  
Konstantinos Balaskas ◽  
...  

AbstractMachine learning has greatly facilitated the analysis of medical data, while the internal operations usually remain intransparent. To better comprehend these opaque procedures, a convolutional neural network for optical coherence tomography image segmentation was enhanced with a Traceable Relevance Explainability (T-REX) technique. The proposed application was based on three components: ground truth generation by multiple graders, calculation of Hamming distances among graders and the machine learning algorithm, as well as a smart data visualization (‘neural recording’). An overall average variability of 1.75% between the human graders and the algorithm was found, slightly minor to 2.02% among human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized. The convolutional neural network balanced between graders and allowed for modifiable predictions dependent on the compartment. Using the proposed T-REX setup, machine learning processes could be rendered more transparent and understandable, possibly leading to optimized applications.


Sign in / Sign up

Export Citation Format

Share Document