scholarly journals Molecules to Mountains: A Multi-Proxy Investigation Into Ancient Climate and Topography of the Pacific Northwest, USA

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexander McLean ◽  
John Bershaw

We characterize the topographic evolution of the Pacific Northwest, United States, during the Cenozoic. New paleosol carbonate stable isotope (δ18O) results from central Oregon are presented, along with published proxy data, including fossil teeth, smectites, and carbonate concretions. We interpret a polygenetic history of Cascade Mountain topographic uplift along-strike, characterized by: 1) Steady uplift of the Washington Cascades through the Cenozoic due long-term arc rotation and shortening against a Canadian buttress, and 2) Uplift of the Oregon Cascades to similar-to-modern elevations by the late Oligocene, followed by topographic stagnation as extension developed into the Neogene. Since the Miocene, meteoric water δ18O values have decreased in Oregon, possibly due to emergence of the Coast Range and westward migration of the coastline. Spatial variability in isotopic change throughout the Pacific Northwest suggests that secular global climate change is not the primary forcing mechanism behind isotopic trends, though Milankovitch cycles may be partly responsible for relatively short-term variation.

2006 ◽  
Vol 36 (7) ◽  
pp. 1749-1757 ◽  
Author(s):  
JeriLynn E Peck

Commercial moss harvest is the predominant disturbance for understory epiphytic bryophyte mats in the Pacific Northwest, yet the rate and dynamics of regrowth of this nontimber forest product are unknown. The first long-term evaluation of cover and species richness regrowth following simulated commercial moss harvest from understory vine maple (Acer circinatum Pursh) shrub stems is reported. Stems harvested of moss on six sites in the Oregon Coast Range in 1994 were examined for species composition and relative abundance of regrowth over the course of a decade. Percent cover increased 5.1%/year, averaging only 51% cover in year 10. Forty percent of the total cover in year 10 was attributable to encroachment from adjacent undisturbed mats and 14% to reestablished litterfall. Shortly after harvest, many taxa established on the newly available habitat, such that species richness surpassed preharvest levels by year 3. In the absence of competitive exclusion even by year 10, species richness continued to exceed preharvest levels by two taxa. Vegetative cover regrowth may require 20 years and volume recovery even longer. Commercial moss harvest should be managed on rotations of several decades, and patchy harvest methods should be encouraged over complete strip harvesting to ensure moss regeneration and promote bryophyte diversity.


2002 ◽  
Vol 32 (6) ◽  
pp. 1057-1070 ◽  
Author(s):  
Linda E Winter ◽  
Linda B Brubaker ◽  
Jerry F Franklin ◽  
Eric A Miller ◽  
Donald Q DeWitt

The history of canopy disturbances over the lifetime of an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand in the western Cascade Range of southern Washington was reconstructed using tree-ring records of cross-dated samples from a 3.3-ha mapped plot. The reconstruction detected pulses in which many western hemlock (Tsuga heterophylla (Raf.) Sarg.) synchronously experienced abrupt and sustained increases in ringwidth, i.e., "growth-increases", and focused on medium-sized or larger ([Formula: see text]0.8 ha) events. The results show that the stand experienced at least three canopy disturbances that each thinned, but did not clear, the canopy over areas [Formula: see text]0.8 ha, occurring approximately in the late 1500s, the 1760s, and the 1930s. None of these promoted regeneration of the shade-intolerant Douglas-fir, all of which established 1500–1521. The disturbances may have promoted regeneration of western hemlock, but their strongest effect on tree dynamics was to elicit western hemlock growth-increases. Canopy disturbances are known to create patchiness, or horizontal heterogeneity, an important characteristic of old-growth forests. This reconstructed history provides one model for restoration strategies to create horizontal heterogeneity in young Douglas-fir stands, for example, by suggesting sizes of areas to thin in variable-density thinnings.


2014 ◽  
Vol 21 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Bryan A. Black ◽  
Jason B. Dunham ◽  
Brett W. Blundon ◽  
Jayne Brim-Box ◽  
Alan J. Tepley

2017 ◽  
Vol 8 (2) ◽  
pp. 640-647 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
Christina T. Uh ◽  
Gregory S. Silver ◽  
Timothy A. Whitesel

Abstract Native lamprey populations are declining worldwide. In the Pacific Northwest focus on conservation and management of these ecologically and culturally important species has increased. Concern has emerged regarding the effects of sampling and handling of lamprey, with little to no attention given to the larval lifestage. We monitored the survival of larval Pacific Lamprey Entosphenus tridentatus and Lampetra spp. after backpack electrofishing, deepwater electrofishing and suction-pumping, anesthesia, and handling. We performed survival trials on wild-caught lamprey (n = 15 larvae in each trial) collected from the Clackamas River drainage in Oregon, USA, coupled with control group trials from lamprey sourced from a hatchery (n = 10 larvae). Short-term (96 h) survival was >98% with only one observed mortality. Delayed mortality (1 wk) was observed for four individuals that had fungus; two of those were positive for the bacteria Aeromonas hyrdrophila. We recorded blood hematocrit as a secondary measure of stress. The baseline, nonstressed larvae hematocrit levels did not differ from those of fish that had undergone stress through electrofishing, suction-pumping, and handling without anesthesia. Electrofishing, suction-pumping, and anesthesia showed no short-term negative effects on larval lamprey although potential long-term effects remain unstudied. These techniques appear to provide efficient and relatively safe methods for collecting and surveying larval lamprey.


Sign in / Sign up

Export Citation Format

Share Document