Canopy disturbances over the five-century lifetime of an old-growth Douglas-fir stand in the Pacific Northwest

2002 ◽  
Vol 32 (6) ◽  
pp. 1057-1070 ◽  
Author(s):  
Linda E Winter ◽  
Linda B Brubaker ◽  
Jerry F Franklin ◽  
Eric A Miller ◽  
Donald Q DeWitt

The history of canopy disturbances over the lifetime of an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand in the western Cascade Range of southern Washington was reconstructed using tree-ring records of cross-dated samples from a 3.3-ha mapped plot. The reconstruction detected pulses in which many western hemlock (Tsuga heterophylla (Raf.) Sarg.) synchronously experienced abrupt and sustained increases in ringwidth, i.e., "growth-increases", and focused on medium-sized or larger ([Formula: see text]0.8 ha) events. The results show that the stand experienced at least three canopy disturbances that each thinned, but did not clear, the canopy over areas [Formula: see text]0.8 ha, occurring approximately in the late 1500s, the 1760s, and the 1930s. None of these promoted regeneration of the shade-intolerant Douglas-fir, all of which established 1500–1521. The disturbances may have promoted regeneration of western hemlock, but their strongest effect on tree dynamics was to elicit western hemlock growth-increases. Canopy disturbances are known to create patchiness, or horizontal heterogeneity, an important characteristic of old-growth forests. This reconstructed history provides one model for restoration strategies to create horizontal heterogeneity in young Douglas-fir stands, for example, by suggesting sizes of areas to thin in variable-density thinnings.

2002 ◽  
Vol 32 (6) ◽  
pp. 1039-1056 ◽  
Author(s):  
Linda E Winter ◽  
Linda B Brubaker ◽  
Jerry F Franklin ◽  
Eric A Miller ◽  
Donald Q DeWitt

We used tree-ring records to reconstruct the stand initiation of an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand in the western Cascade Range of southern Washington. All tree-ring samples were prepared and crossdated. Following a stand-replacing fire, the stand initiation period lasted from 1500 to 1540, with gradual filling-in of growing space over this period. All sampled Douglas-fir were initial colonizers, establishing (at stump-height) 1500–1521 under open conditions. A small number of the sampled western hemlock (Tsuga heterophylla (Raf.) Sarg.) were also initial colonizers. Growing space filled as tree crowns widened, and by 1540, closed forest conditions had developed. At this time, Douglas-fir were spaced about 3.5 m from equivalent competitors (ca. 800 trees/ha). In the centuries following canopy closure, considerable natural thinning of the initial colonizers occurred, but the canopy never opened enough again to allow further Douglas-fir establishment. Surviving Douglas-fir developed deep crowns despite the narrow initial spacing, and without epicormic branching from the bole. Most western hemlock that were canopy trees in 1992 established after 1540, originating in the understory. This reconstruction provides an example that may be useful where management policies emphasize the development of old-growth structures.


2006 ◽  
Vol 36 (6) ◽  
pp. 1484-1496 ◽  
Author(s):  
M M Amoroso ◽  
E C Turnblom

We studied pure and 50/50 mixtures of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) plantations to compare attained total yields between mixed-species stands as opposed to monocultures of equal densities. Whether overall stand density influences this outcome has not been adequately investigated, and to address this we included three density levels (494, 1111, and 1729 trees/ha) in the analysis. At age 12, as components of the mixed stands, Douglas-fir exhibited greater height, diameter, and individual-tree volume than western hemlock at all densities. At 494 and 1111 trees/ha the monocultures had a higher volume per hectare than the mixed stand, but at 1729 trees/ha the mixed stand appeared to be just as productive as the pure stands. The increase in productivity by the mixture at high densities seems to have resulted from the partial stratification observed and most likely also from better use of the site resources. Because of this, less interspecific competition was probably experienced in the mixed stand than intraspecific competition in the pure stands. This study shows the important role density plays in the productivity of mixed stands and thus in comparing mixed and pure stands.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1240-1241
Author(s):  
M. Apple ◽  
A. Soeldner ◽  
R. Hamill ◽  
K. Tiekotfer

Old-growth Douglas-fir trees in the Pacific Northwest are venerable giants that often live for 500 years and reach heights of over 75 meters. Their needles are relatively ephemeral and small but have the important role of interacting with the atmosphere in order to transpire and photosynthesize. Within the photosynthetic mesophyll tissue of Douglas-fir needles, there are large, non-living cells with lignified secondary cell walls that are known as astrosclereids. Apparent channels in the secondary wall may provide a route for exchange or transport of materials between the astrosclereid lumen and mesophyll cells or the vascular cylinder. Astrosclereids may be involvev d in storage of secondary metabolites such as tannin and may develop in response to fungi, mistletoe, or other pathogens. More knowledge is needed about the development, structure and function of astrosclereids.Needles were collected from sapling and old-growth Douglas-fir, Pseudotsuga menziesii, (Mirb.) Franco, trees at the Wind River Canopy Crane in Carson, Washington and from three sites in the Cascade Mountains of Oregon in 1997 and 1998.


1977 ◽  
Vol 8 (3) ◽  
pp. 282-306 ◽  
Author(s):  
Calvin J. Heusser

Quaternary deposits on the Pacific slope of Washington range in age from the earliest known interglaciation, the Alderton, through the Holocene. Pollen stratigraphy of these deposits is represented by 12 major pollen zones and is ostensibly continuous through Zone 8 over more than 47,000 radiocarbon yr. Before this, the stratigraphy is discontinuous and the chronology less certain. Environments over the time span of the deposits are reconstructed by the comparison of fossil and modern pollen assemblages and the use of relevant meteorological data. The Alderton Interglaciation is characterized by forests of Douglas fir (Pseudotsuga menziesii), alder (Alnus), and fir (Abies). During the next younger interglaciation, the Puyallup, forests were mostly of pine, apparently lodgepole (Pinus contorta), except midway in the interval when fir, western hemlock (Tsuga heterophylla), and Douglas fir temporarily replaced much of the pine. Vegetation outside the limits of Salmon Springs ice (>47,00034,000 yr BP) varied chiefly between park tundra and forests of western hemlock, spruce (Picea), and pine. The Salmon Springs nonglacial interval at the type locality records early park tundra followed by forests of pine and of fir. During the Olympia Interglaciation (34,000–28,000 yr BP), pine invaded the Puget Lowland, whereas western hemlock and spruce became manifest on the Olympic Peninsula. Park tundra was widespread during the Fraser Glaciation (28,000–10,000 yr BP) with pine becoming more important from about 15,000 to 10,000 yr BP. Holocene vegetation consisted first of open communities of Douglas fir and alder; later, closed forests succeeded, formed principally of western hemlock on the Olympic Peninsula and of western hemlock and Douglas fir in the Puget Lowland. Over the length of the reconstructed environmental record, climate shifted between cool and humid or relatively warm, semihumid forest types and cold, relatively dry tundra or park tundra types. During times of glaciation, average July temperatures are estimated to have been at least 7°C lower than today. Only during the Alderton Interglaciation and during the Holocene were temperatures higher for protracted periods than at present.


2000 ◽  
Vol 30 (12) ◽  
pp. 1922-1930 ◽  
Author(s):  
Sean C Thomas ◽  
William E Winner

Leaf area index (LAI) in old-growth Douglas-fir (Pseudotsuga menziesii var menziesii (Mirb.) Franco) forests exceeds that of any other forest ecosystem by some estimates; however, LAI determinations in coniferous forests have generally been indirect, involving extrapolations of patterns observed in younger stands. Aided by a 75-m construction crane for canopy access, we used a vertical line-intercept method to estimate LAI for a [Formula: see text]450-year-old Douglas-fir - western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest in southwestern Washington state. LAI was calculated as the product of foliage contact frequency and an "extinction coefficient" accounting for foliage angular distribution, geometry, and the ratio of "interceptable" to total leaf area. LAI estimates were 9.3 ± 2.1 (estimate ± 95% confidence interval), 8.5 ± 2.2, and 8.2 ± 1.8 in 1997, 1998, and 1999, respectively, or 8.6 ± 1.1 pooled across years. Understory vegetation, including foliage of woody stems <5 cm diameter, represented 20% of this total. Sample points in which Douglas-fir was dominant had a higher total LAI than points dominated by western hemlock, including a higher LAI of understory vegetation. Our results do not support the contention that old-growth Douglas-fir - western hemlock forests maintain an appreciably higher LAI than do other forest ecosystems. Moreover, LAI in very old stands may decline as western hemlock replaces Douglas-fir through the course of succession.


2005 ◽  
Vol 35 (4) ◽  
pp. 990-1001 ◽  
Author(s):  
David C Shaw ◽  
Jiquan Chen ◽  
Elizabeth A Freeman ◽  
David M Braun

We investigated the distribution and severity of trees infected with western hemlock dwarf mistletoe (Arceuthobium tsugense (Rosendahl) G.N. Jones subsp. tsugense) in an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) – western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest. With the use of Hawksworth six-class dwarf mistletoe rating system, infection status was assessed for 3516 hemlock and true firs ≥5 cm diameter on a 12-ha stem-mapped plot located in the Cascade Mountains of southwest Washington State. Within the plot, 33% of the area had some level of infection and 25% (719) of western hemlocks, 2.2% (12) of Pacific silver fir (Abies amabilis (Dougl.) Forbes), and 29% (2) of noble fir (Abies procera Rehd.) trees were infected. Infected trees are larger than uninfected trees, on average, and within the infected tree population, the severely infected trees averaged larger than lightly infected trees. Abundant dwarf mistletoe in larger trees definitely positions the dwarf mistletoe population for future spread. Ripley's K analysis indicates a negative association between infected and uninfected hemlock trees, confirming that the infected trees form distinct dwarf mistletoe infection centers. The infection centers are actively spreading at their margins, which was confirmed by nearest neighbor analysis. Heavily infected trees had a negative association with uninfected trees, while lightly infected trees had a positive association with uninfected trees.


2014 ◽  
Vol 44 (9) ◽  
pp. 1068-1078 ◽  
Author(s):  
James A. Freund ◽  
Jerry F. Franklin ◽  
Andrew J. Larson ◽  
James A. Lutz

The rate at which trees regenerate following stand-replacing wildfire is an important but poorly understood process in the multi-century development of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) forests. Temporal patterns of Douglas-fir establishment reconstructed from old-growth forests (>450 year) have generated contradictory models of either rapid (<25 year) or prolonged (>100 year) periods of establishment, while patterns of tree establishment in mid-aged (100 to 350 year) forests remains largely unknown. To determine temporal patterns of Douglas-fir establishment following stand-replacing fire, increment cores were obtained from 1455 trees in 18 mature and early old-growth forests in western Washington and northwestern Oregon, USA. Each of the stands showed continuous regeneration of Douglas-fir for many decades following initiating fire. The establishment period averaged 60 years (range: 32–99 years). These results contrast both with the view of rapid (one- to two-decade) regeneration of Douglas-fir promoted in the early forestry literature and with reports of establishment periods exceeding 100 years in older (>400 year) Douglas-fir–western hemlock stands. These results have important implications for management designed to create and promote early-seral forest characteristics.


Sign in / Sign up

Export Citation Format

Share Document