scholarly journals Evaluation of Precipitation in the Chinese Regional Reanalysis Using Satellite Estimates, Gauge-Based Observations and Global Reanalysis

2021 ◽  
Vol 9 ◽  
Author(s):  
Yutong Lu ◽  
Min Shao ◽  
Juan Fang ◽  
Yinong Pan ◽  
Jianping Tang

Two high-resolution Chinese regional reanalysis (CNRR) datasets at a resolution of 18 km during the period of 1998–2009 are generated by Gridpoint Statistical Interpolation (GSI) data assimilation system and spectral nudging (SN) method. The precipitation from CNRR is comprehensively evaluated against the observational datasets and global reanalysis ERA5 over East-Asia. The climatology mean, seasonal variability, extreme events, and summer diurnal cycle of precipitation are analyzed. Results show that CNRR reasonably reproduces the observed characteristics of rainfall, although some biases exist. The spatial distribution of climatology mean precipitation is well simulated by CNRR, while overestimation exists especially on the west side of Tibetan-Plateau (TP). CNRR reproduces the unimodal feature of the annual cycle with overestimations of summer precipitation, and well produces the probability of light and moderate rainfall but tend to overestimate heavy and extreme precipitation over most regions in China. The overall spatial distribution of extreme precipitation indices can be captured by CNRR. The diurnal cycle of summer precipitation, as well as the amplitude of diurnal cycle, are better reproduced by CNRR-GSI, capturing eastward propagation of diurnal phase from TP along the Yangtze River. CNRR-GSI generally outperforms CNRR-SN over most regions of China except in reproducing heavy and extreme rainfall in the Yangtze River Basin (YRB) and South China (SC) regions. CNRR-GSI shows comparable results with the latest ERA5 and outperforms it in simulating the diurnal cycle of precipitation. This dataset can be considered as a reliable source for precipitation related applications.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong Zhao ◽  
Anning Huang ◽  
Menyun Kan ◽  
Xinning Dong ◽  
Xiaojing Yu ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 1451
Author(s):  
Fengying Zhang ◽  
Zengxin Zhang ◽  
Rui Kong ◽  
Juan Chang ◽  
Jiaxi Tian ◽  
...  

Net Primary Productivity (NPP) is a basis of material and energy flows in terrestrial ecosystems, and it is also an important component in the research on carbon cycle and carbon budget. This paper evaluated the spatial distribution pattern and temporal change trends for forest NPP simulated by the LPJ (Lund-Potsdam-Jena) model and NDVI (normalized difference vegetation index) in the Yangtze River basin from 1982 to 2013. The results revealed that: (1) the spatial distribution of the forest NPP and NDVI in the Yangtze River basin has gradually decreased from the southeast coast to the northwest. The forest NPP and NDVI in the mid-lower Yangtze were higher than that of the upper Yangtze; (2) the forest NPP and NDVI in most areas of the Yangtze River basin were positively correlated with the temperature and precipitation. Moreover, the correlations among the temperature with the forest NPP and NDVI were stronger than that of correlations among precipitation with forest NPP and NDVI. Moreover, the extreme drought event in the year of 2004–2005 led the NPP to decrease in the middle and lower Yangtze River basin; (3) human activity such as major ecological projects would have a certain impact on the NPP and NDVI. The increase in forest areas from 2000 to 2010 was larger than that from 1990 to 2000. Moreover, the increasing rate for the NDVI was higher than that of NPP, especially after the year 2000, which indicates that the major ecological projects might have great impacts on the vegetation dynamics. Moreover, more attention should be paid on the joint impacts of human activity and climate change on terrestrial NPP and NDVI.


Sign in / Sign up

Export Citation Format

Share Document