scholarly journals Acceleration of Dynamic Ice Loss in Antarctica From Satellite Gravimetry

2021 ◽  
Vol 9 ◽  
Author(s):  
Theresa Diener ◽  
Ingo Sasgen ◽  
Cécile Agosta ◽  
Johannes J. Fürst ◽  
Matthias H. Braun ◽  
...  

The dynamic stability of the Antarctic Ice Sheet is one of the largest uncertainties in projections of future global sea-level rise. Essential for improving projections of the ice sheet evolution is the understanding of the ongoing trends and accelerations of mass loss in the context of ice dynamics. Here, we examine accelerations of mass change of the Antarctic Ice Sheet from 2002 to 2020 using data from the GRACE (Gravity Recovery and Climate Experiment; 2002–2017) and its follow-on GRACE-FO (2018-present) satellite missions. By subtracting estimates of net snow accumulation provided by re-analysis data and regional climate models from GRACE/GRACE-FO mass changes, we isolate variations in ice-dynamic discharge and compare them to direct measurements based on the remote sensing of the surface-ice velocity (2002–2017). We show that variations in the GRACE/GRACE-FO time series are modulated by variations in regional snow accumulation caused by large-scale atmospheric circulation. We show for the first time that, after removal of these surface effects, accelerations of ice-dynamic discharge from GRACE/GRACE-FO agree well with those independently derived from surface-ice velocities. For 2002–2020, we recover a discharge acceleration of -5.3 ± 2.2 Gt yr−2 for the entire ice sheet; these increasing losses originate mainly in the Amundsen and Bellingshausen Sea Embayment regions (68%), with additional significant contributions from Dronning Maud Land (18%) and the Filchner-Ronne Ice Shelf region (13%). Under the assumption that the recovered rates and accelerations of mass loss persisted independent of any external forcing, Antarctica would contribute 7.6 ± 2.9 cm to global mean sea-level rise by the year 2100, more than two times the amount of 2.9 ± 0.6 cm obtained by linear extrapolation of current GRACE/GRACE-FO mass loss trends.

2015 ◽  
Vol 61 (230) ◽  
pp. 1019-1036 ◽  
Author(s):  
H. Jay Zwally ◽  
Jun Li ◽  
John W. Robbins ◽  
Jack L. Saba ◽  
Donghui Yi ◽  
...  

AbstractMass changes of the Antarctic ice sheet impact sea-level rise as climate changes, but recent rates have been uncertain. Ice, Cloud and land Elevation Satellite (ICESat) data (2003–08) show mass gains from snow accumulation exceeded discharge losses by 82 ± 25 Gt a−1, reducing global sea-level rise by 0.23 mm a−1. European Remote-sensing Satellite (ERS) data (1992–2001) give a similar gain of 112 61 Gt a−1. Gains of 136 Gt a−1 in East Antarctica (EA) and 72 Gt a−1 in four drainage systems (WA2) in West Antarctic (WA) exceed losses of 97 Gt a−1 from three coastal drainage systems (WA1) and 29 Gt a−1 from the Antarctic Peninsula (AP). EA dynamic thickening of 147 Gt a−1 is a continuing response to increased accumulation (>50%) since the early Holocene. Recent accumulation loss of 11 Gt a−1 in EA indicates thickening is not from contemporaneous snowfall increases. Similarly, the WA2 gain is mainly (60 Gt a−1) dynamic thickening. In WA1 and the AP, increased losses of 66 ± 16 Gt a−1 from increased dynamic thinning from accelerating glaciers are 50% offset by greater WA snowfall. The decadal increase in dynamic thinning in WA1 and the AP is approximately one-third of the long-term dynamic thickening in EA and WA2, which should buffer additional dynamic thinning for decades.


2020 ◽  
Author(s):  
Yijing Lin

<p>Global warming has become a world concerned issue which draws increasingly attention of the scientific community. Sea-level rise is an important indicator of Global warming as it integrates many factors of climate change including ice sheet melting.  The accurate assessment of the Antarctic ice sheet mass balance is applied to deeply explore the impact of minor change in Antarctic ice sheet on sea level rise. Based on multi-source remote sensing product, we finely estimated the mass balance of the Antarctic ice sheet and discussed dynamics and climatological causes of the fluctuations from 2005 to 2015 by IOM (Input-Output-Method).</p><p>In our study, the calculation method of ice flux on the grounding line is improved. We also precisely evaluate the ice flux as an output component. The result shows that: (1) The Antarctic ice sheet was continuously losing mass during the period of 2005-2016. (2) The mass loss of the Antarctic ice sheet was dominated by West Antarctica when East Antarctica was in a positive mass balance, but some basins also occurred significant mass loss. The Antarctic peninsula fluctuated in a state of zero balance. (3) The change in the mass balance of the ice sheet was dominated by the surface mass balance as a whole, and was mainly affected by the interannual variation of climatological factors. From a small-scale perspective, ice shelf thinning and glacier calving causes the change of ice flux on the grounding line. That change leads to the severe mass loss in the region it happened. Therefore the mass loss in the year of the disintegration event happened increases.</p>


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


1997 ◽  
Vol 25 ◽  
pp. 137-144 ◽  
Author(s):  
Siobhan P. O’Farrell ◽  
John L. McGregor ◽  
Leon D. Rotstayn ◽  
William F. Budd ◽  
Christopher Zweck ◽  
...  

The response of the Antarctic ice sheet to climate change over the next 500 years is calculated using the output of a transient-coupled ocean-atmosphere simulation assuming the atmospheric CO2value increases up to three times present levels. The main effects on the ice sheet on this time-scale include increasing rates of accumulation, minimal surface melting, and basal melting of ice shelves. A semi-Lagrangian transport scheme for moisture was used to improve the model’s ability to represent realistic rates of accumulation under present-day conditions, and thereby increase confidence in the anomalies calculated under a warmer climate. The response of the Antarctic ice sheet to the warming is increased accumulation inland, offset by loss from basal melting from the floating ice, and increased ice flow near the grounding line. The preliminary results of this study show that the change to the ice-sheet balance for the transient-coupled model forcing amounted to a minimal sea-level contribution in the next century, but a net positive sea-level rise of 0.21 m by 500 years. This new result supercedes earlier results that showed the Antarctic ice sheet made a net negative contribution to sea-level rise over the next century. However, the amplitude of the sea-level rise is still dominated In the much larger contributions expected from thermal expansion of the ocean of 0.25 m for 100 years and 1.00 m for 500 years.


2015 ◽  
Vol 1 (8) ◽  
pp. e1500589 ◽  
Author(s):  
Ricarda Winkelmann ◽  
Anders Levermann ◽  
Andy Ridgwell ◽  
Ken Caldeira

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.


2015 ◽  
Vol 112 (46) ◽  
pp. 14191-14196 ◽  
Author(s):  
Johannes Feldmann ◽  
Anders Levermann

The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades’ enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner–Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia.


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2018 ◽  
Author(s):  
Qiang Shen ◽  
Hansheng Wang ◽  
C. K. Shum ◽  
Liming Jiang ◽  
Hou Tse Hsu ◽  
...  

Abstract. Ice velocity constitutes a key parameter for estimating ice-sheet discharge rates and is crucial for improving coupled models of the Antarctic ice sheet to accurately predict its future fate and contribution to sea-level change. Here, we present a new Antarctic ice velocity map at a 100-m grid spacing inferred from Landsat 8 imagery data collected from December 2013 through March 2016 and robustly processed using the feature tracking method. These maps were assembled from over 73,000 displacement vector scenes inferred from over 32,800 optical images. Our maps cover nearly all the ice shelves, landfast ice, ice streams, and most of the ice sheet. The maps have an estimated uncertainty of less than 10 m yr-1 based on robust internal and external validations. These datasets will allow for a comprehensive continent-wide investigation of ice dynamics and mass balance combined with the existing and future ice velocity measurements and provide researchers access to better information for monitoring local changes in ice glaciers. Other uses of these datasets include control and calibration of ice-sheet modelling, developments in our understanding of Antarctic ice-sheet evolution, and improvements in the fidelity of projects investigating sea-level rise (https://doi.pangaea.de/10.1594/PANGAEA.895738).


Sign in / Sign up

Export Citation Format

Share Document