scholarly journals Tales From Three 18th Century Eruptions to Understand Past and Present Behaviour of Etna

2021 ◽  
Vol 9 ◽  
Author(s):  
Rosa Anna Corsaro ◽  
Stefano Branca ◽  
Emanuela De Beni ◽  
Jean-Claude Tanguy

The structure of an active volcano is highly dependent on the interplay between the geodynamic context, the tectonic assessment as well as the magmatic processes in the plumbing system. This complex scenario, widely explored at Etna during the last 40 years, is nevertheless incomplete for the recent historical activity. In 1763 two eruptions occurred along the west flank of the volcano. There, an eruption started on 6th February and formed the scoria cone of Mt. Nuovo and a roughly 4-km-long lava flow field. Another small scoria cone, known as Mt. Mezza Luna, is not dated in historical sources. It is located just 1 km eastward of Mt. Nuovo and produced a 700 m long flow field. We focused on the activity of Mts. Nuovo and Mezza Luna for several reasons. First, the old geological maps and volcanological catalogues indicate that Mt. Mezza Luna and Mt. Nuovo cones were formed during the same eruption, while historical sources described Mt. Nuovo’s activity as producing a single scoria cone and do not give information about the formation of Mt. Mezza Luna. Second, petrologic studies highlight that the products of Mt. Mezza Luna are similar to the sub-aphyric Etna basalts; they preserve a composition relatively close to Etna primitive magma which were also erupted in 1763, during La Montagnola flank eruption, which took place along the South Rift of the volcano. Third, the two scoria cones built up along the so-called West Rift of Etna, which represents one of the main magma-ascent zones of the volcano. We applied a multidisciplinary approach that could prove useful for other volcanoes whose past activity is still to be reconstructed. Critical reviews of historical records, new field surveys, petrochemical analyses and petrologic modelling of the Mts. Nuovo and Mezza Luna eruptions have been integrated with literature data. The results allowed improving the stratigraphic record of historical eruptions reported in the Mount Etna Geological map, modelling the sub-volcanic magmatic processes responsible for magma differentiation, and evidencing recurrent mechanisms of magma transfer at Etna. Indeed, the intrusion of a deep primitive magma along the South Rift is often associated with the activation of other rift zones that erupt residual magma stored in the shallow plumbing system.

2003 ◽  
Vol 30 (2) ◽  
Author(s):  
A. Caracausi ◽  
R. Favara ◽  
S. Giammanco ◽  
F. Italiano ◽  
A. Paonita ◽  
...  

2020 ◽  
Author(s):  
Barbara Hofbauer ◽  
Theodoros Ntaflos ◽  
Rainer Abart ◽  
Pier Paolo Giacomoni ◽  
Massimo Coltorti ◽  
...  

<p>Mt. Etna is one of the most protrusive features of the eastern coastline of Sicily, Italy. As Europe’s most active volcano it has been studied extensively to reveal its geodynamic setting, plumbing system and due to the constant monitoring of the volcano edifice the prediction of the risk future events is sophisticated at Mt. Etna. <br />The eruptive activity has been divided according to the age into 6 stages: (1) “Tholeiitic Stage”, was active between 600-320 ka ago, (2) the “Timpe Stage” between 220 and 110 ka ago, (3) the “Ancient Alcaline Volcanism”  between 110 and 65 ka ago and (4) the “Ellittico Stage” between 57 and 15 ka ago (5) the “Mongibello Stage” from 15 ka ago until 1971 and (6) the “post -1971 Stage” active since 1971 (Casetta et al., 2019).</p> <p>The lava propagating through the Etnean plumbing system generated a complex network consisting of sills and dykes responsible for the formation of the summit craters and a plethora of eccentric cones that cover the flanks of the volcano.</p> <p>We studied using whole rock and mineral analyses the lavas from three eccentric cones (Monte Maletto, Monte Nuovo and Monte Frumento) and the 2001 eruption on the south flank from the main crater. All lavas are characterized by trachytic texture with variable modal composition of olivine, clinopyroxene and plagioclase phenocrysts. The Monte Maletto whole rock composition with an Mg# ranging between 56-58 and a CaO content of 12.0 wt% are the most primitive lavas among the sampled outcrops whereas the Monte Frumento lavas are the most evolved since the Mg# ranges from 43 to 46 and the CaO content from 9.5 to 10.8 wt%. Both, Monte Nuovo and 2001 eruption are more evolved than the Monte Maletto since they have Mg# ~ 50 and 51.5-52.9 respectively. The CaO concentration in both outcrops is relatively constant ranging from 9.8 to 10.7 wt%.</p> <p>The olivine compositions follow the same trend as their whole rocks. The most MgO-rich olivine (Fo=87.5 %) found in the Monte Maletto lavas. This olivine is of magmatic origin and cannot be considered as mantle derived xenocryst since the NiO content is low (NiO=0.16 wt%) and the CaO-content high (CaO=0.22 wt%). The most evolved lavas from Monte Frumente have the lowest Fo-content (Fo=64-68 %). Olivine from both, Monte Nuovo and 2001 eruption have a characteristic inverse zonation with Fo-content in the core ranging from 69.9 to 75 and in the rim from 78.2 to 81.7 respectively.</p> <p>In conclusion, the Monte Maletto lavas represent the most primitive magma formed at high temperatures (skeletal growing of the olivine) and the Monte Frumento lavas the most evolved magma. The Monte Nuovo and 2001 eruption experienced magma mixing as inferred from the olivine inverse zonation. Monte Nuovo can be considered a flank eruption of lava deviated from the central conduit rather than an eccentric cone.</p> <p>Casetta, Federico, et al. "The evolution of the mantle source beneath Mt. Etna (Sicily, Italy): from the 600 ka tholeiites to the recent trachybasaltic magmas." International Geology Review (2019): 1-22.</p>


1997 ◽  
Vol 58 (6) ◽  
pp. 449-454 ◽  
Author(s):  
Nicki F. Stevens ◽  
John B. Murray ◽  
Geoff Wadge

2012 ◽  
Author(s):  
S. Minami ◽  
M. Iguchi ◽  
H. Mikada ◽  
T. Goto ◽  
J. Takekawa

Author(s):  
V. I. Kafta ◽  
M. V. Rodkin

We present results from a study of lateral Earth’s surface deformation and vertical movements in the area of the Mount Etna active volcano (Sicily, Italy) based on observations by global satellite navigation systems in 2011–2017 at time intervals of 24 hours at sparse stations of the regional geodetic network. The study of Mount Etna is especially important because (1) the volcano stands in a densely populated area, (2) the eruptions are nearly continuous, and (3) the location of the volcano is inconsistent with plate tectonic concepts. Subregional trends have been identified in the deformation of the area of study. Extension was recorded, not only around the summit crater, but also far from it, in the Ionian Sea. This circumstance suggests the existence of an extensive plumbing system at depth whose sources are far from the active summit crater. We discuss geological and geophysical survey results of the coastal area and the sea area in the region. It is shown that Earth’s surface deformation should be studied from observations of the existing networks that are sparse, but cover a large area.


Author(s):  
V. I. Kafta ◽  
M. V. Rodkin

We present results from a study of lateral Earth’s surface deformation and vertical movements in the area of the Mount Etna active volcano (Sicily, Italy) based on observations by global satellite navigation systems in 2011–2017 at time intervals of 24 hours at sparse stations of the regional geodetic network. The study of Mount Etna is especially important because (1) the volcano stands in a densely populated area, (2) the eruptions are nearly continuous, and (3) the location of the volcano is inconsistent with plate tectonic concepts. Subregional trends have been identified in the deformation of the area of study. Extension was recorded, not only around the summit crater, but also far from it, in the Ionian Sea. This circumstance suggests the existence of an extensive plumbing system at depth whose sources are far from the active summit crater. We discuss geological and geophysical survey results of the coastal area and the sea area in the region. It is shown that Earth’s surface deformation should be studied from observations of the existing networks that are sparse, but cover a large area.


2021 ◽  
Author(s):  
César Daniel Castro ◽  
Miriam Christina Reiss ◽  
Arne Spang ◽  
Philip Hering ◽  
Luca de Siena ◽  
...  

<p>How well can geophysical methods image magmatic systems? Geophysical methods are commonly used to image magmatic systems; however, synthetic studies which give insights into the resolution of such methods and their interpretational scope are rare. Gravity anomalies, magnetotelluric, seismological and geodynamical modelling all have a different sensitivity to the rock parameters and are thus likely complementary methods. Our study aims to better understand their interplay by performing joint modelling of a synthetic magmatic system.  Our model setup of a magma chamber is inspired by seismological observations at the Natron plumbing system including active volcano Oldoinyo Lengai within the East African Rift system. The geodynamic modelling is guided by shear-wave velocity anomalies and it is constrained by a large Bouguer gravity anomaly which is modelled by a voxel-based gravity code. It yields the 3D distribution of several geological parameters (pressure, temperature, stress, density, rock type). The parameters are converted into a 3D resistivity distribution. By 3D forward modelling including the topography, synthetic MT transfer functions (phase tensor, induction vectors) are calculated for a rectangular grid of 441 sites covering the area. The variation of geodynamic parameters and/or petrological relations alters the related resistivity distribution and thus yields the sensitivity of MT responses to geodynamic parameters. In turn, MT observations may constrain geodynamic modelling by inverting MT transfer functions. The inversion is performed allowing for the recent seismicity distribution beneath the Natron plumbing system, assuming that active seismic areas are related to enhanced resistivity. The inversion is performed for a realistic distribution (in view of logistic accessibility) of about 40 MT sites.</p><p>By combining multiple forward models, this study yields insights into the sensitivity of different observables and thus provides a valuable base on how MT, gravity and seismological observations can help imaging a complex geological setting.</p>


2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.


Sign in / Sign up

Export Citation Format

Share Document