magma plumbing system
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
René Mania ◽  
Simone Cesca ◽  
Thomas R. Walter ◽  
Ivan Koulakov ◽  
Sergey L. Senyukov

Explosive eruptions at steep-sided volcanoes may develop with complex precursor activity occurring in a poorly-understood magma plumbing system so that timelines and possible interactions with the geologic surrounding are often unresolved. Here we investigate the episode prior to the energetic December 20, 2017 eruption at Bezymianny volcano, Kamchatka. We compare degassing activity inferred from time-lapse camera images, seismicity and real-time seismic amplitude (RSAM) data derived from a temporary station network, as well as high-resolution InSAR displacement maps. Results show that the first changes can be identified in low-frequency seismicity and degassing at least 90 days before the eruption, while the first volcano-tectonic (VT) seismicity occurred 50 days before the eruption. Coinciding with significant changes of the RSAM, surface displacements affect the volcanic flanks at least 9 days prior to the eruption. Inversion modeling of the pre-eruptive surface deformation as well as deflation-type, co-eruptive surface changes indicate the presence of a shallow and transient reservoir. We develop a conceptual model for Bezymianny volcano initiating with deep seismicity, followed by shallow events, rockfalls, steaming and an inflating reservoir. The eruption is then associated with subsidence, caused by deflation of the same reservoir. This sequence and conceivable causality of these observations are providing a valuable contribution to our understanding of the shallow magma plumbing system beneath Bezymianny and may have relevance for volcano monitoring and early warning strategies at similar volcanoes elsewhere.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1295
Author(s):  
Peijia Chen ◽  
Nianqiao Fang ◽  
Xiaobo Yuan

The Sanshui Basin is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in Sanshui Basin record the early Cenozoic magmatic activity in the South China Block, but the magmatic evolution that produced the bimodal volcanic rocks is poorly understood. Clinopyroxenes in bimodal volcanic rocks in the Sanshui Basin provide an opportunity to investigate magma during magma ascent. In this work, we classified nine types of clinopyroxene phenocrysts according to composition and texture in cogenetic basalt-trachyandesite-comenditic trachyte, while the composition of unzoned clinopyroxene have an evolution sequence of diopside-hedenbergite-aegirine along with an increase in trace element contents with a decrease of Mg#, indicating that the genesis of clinopyroxene was dominated by fractional crystallization in a closed magma system. However, the clinopyroxenes with reversed zoning and multiple zoning record the process of magma mixing and recharge indicating an open magma system. While fractional crystallization is the dominant process, magma mixing, recharge, and crystal settling were also found to influence magma evolution. Thermobarometric calculations showed that clinopyroxene crystallized a several structural levels in the crust during magma ascent. In this study, we established a magma plumbing system that provides new constraints for the magma evolution in the Sanshui Basin.


Author(s):  
Peijia Chen ◽  
Nianqiao Fang ◽  
Xiaobo Yuan

The Sanshui Basin (SSB) is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in SSB record the early Cenozoic magmatic activity in the South China Block, on the magmatic evolution process of bimodal volcanic rocks are poorly understood. Clinopyroxenes in bimodal volcanic rocks in the SSB provide an opportunity to investigate the magma process during magma ascent. We classified nine types of clinopyroxene phenocrysts according to the different compositions and textures types in cogenetic basalt-trachyandesite-comenditic trachyte, the composition of unzoned clinopyroxene have an evolution sequence of diopside- hedenbergite- aegirine with the decrease of Mg#, and the trace element contents of unzoned clinopyroxenes also increase systematically during magma evolution, indicating that the genesis of clinopyroxene dominated by fractional crystallization in a closed magma system; however, the clinopyroxenes with reverse zoning and multiple zoning record the process of magma mixing and recharge indicating an open magma system. Whilst fractional crystallization is the dominated process, magma mixing, recharge, and crystal settling complicate magma evolution. Thermobarometric calculations show that clinopyroxene phenocrysts in bimodal volcanic rocks of SSB are distributed in the whole crust during magma ascent. We have established a magma plumbing system, which provides a new constrain for the complex magmatic evolution history in the SSB by detailed mineral-scale analysis.


Lithos ◽  
2021 ◽  
pp. 106545
Author(s):  
A. Pontesilli ◽  
M. Brenna ◽  
S. Mollo ◽  
M. Masotta ◽  
M. Nazzari ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
Yabin Li ◽  
Aihua Weng ◽  
Wenliang Xu ◽  
Zonglin Zou ◽  
Yu Tang ◽  
...  

The magma plumbing systems of volcanoes in subduction and divergent tectonic settings are relatively well known, whereas those of intraplate volcanoes remain elusive; robust geophysical information on the magma pathways and storage zones is lacking. We inverted magnetotelluric data to image the magma plumbing system of an intraplate monogenetic volcanic field located above the stagnant Pacific slab in northeast China. We identified a complex, vertically aligned, low-resistivity anomaly system extending from the asthenosphere to the surface consisting of reservoirs with finger- to lens-like geometries. We show that magma forms as CO2-rich melts in a 150-km-deep asthenospheric plume crossing the whole lithosphere as hydrated melt, inducing underplating at 50 km depth, evolving in crustal reservoirs, and erupting along dikes. Intraplate volcanoes are characterized by low degrees of melting and low magma supply rates. Their plumbing systems have a geometry not so different from that of volcanoes in subduction settings.


2021 ◽  
Author(s):  
Oliver Higgins ◽  
Tom Sheldrake ◽  
Luca Caricchi

The physical and chemical properties of magma govern the eruptive style and behaviour of volcanoes. Many of these parameters are linked to the storage pressure and temperature of the erupted magma, and melt chemistry. However, reliable single-phase thermobarometers and chemometers which can recover this information, particularly using amphibole chemistry, remain elusive. We present a suite of single-phase amphibole and clinopyroxene thermobarometers and chemometers, calibrated using machine learning. This approach allows us to intimately track the range of pre-eruptive conditions over the course of a millennial eruptive cycle on an island arc volcano (Saint Kitts, Eastern Caribbean). We unpick the story of Mount Liamuiga, a stratovolcano that pops its upper-crustal (2 kbar), dacitic cork at the beginning of the Lower Mansion Series eruptive sequence. This permits a progressive increase in the thermal maturity of the magma arriving at the surface from the middle to upper crust (2 – 5.5 kbar) through time. The temperature increase correlates well with matrix plagioclase chemistry, which itself displays a remarkable progression to less evolved (more anorthitic) composition in time. We find that amphibole is a reliable themobarometer (SEE = 1.4 kbar; 40 ˚C), at odds with previous studies. We suggest it is the regression strategy, as opposed to the abject insensitivity to pressure, that has hindered previous calibrations of amphibole only thermobarometers. By recognising this, we have constructed a high-resolution, quantitative picture of the magma plumbing system beneath an arc volcano.


2021 ◽  
Author(s):  
Yabin Li ◽  
Aihua Weng ◽  
et al.

Details on the 3-D magnetotelluric inversion, sensitivity test of resistivity anomalies and melt fraction estimation, and Figures S1–S11. <br>


2021 ◽  
Author(s):  
Yabin Li ◽  
Aihua Weng ◽  
et al.

Details on the 3-D magnetotelluric inversion, sensitivity test of resistivity anomalies and melt fraction estimation, and Figures S1–S11. <br>


Sign in / Sign up

Export Citation Format

Share Document