scholarly journals Development Characteristics and Finite Element Simulation of Fractures in Tight Oil Sandstone Reservoirs of Yanchang Formation in Western Ordos Basin

2022 ◽  
Vol 9 ◽  
Author(s):  
Shilin Wang ◽  
Hu Li ◽  
Lifei Lin ◽  
Shuai Yin

Structural fractures have a significant control effect on the large-scale accumulation of hydrocarbons in the Yanchang Formation. Previous studies have affirmed the important role of fractures in hydrocarbon accumulations in strongly deformed zones. However, for low-amplitude structural areas, the degree of fracture development is relatively low, and their control on sweet spots of hydrocarbons has not yet formed a unified understanding. In this paper, taking the Upper Triassic Yanchang Formation in the western Ordos Basin as an example, the development characteristics, prediction method, and the distribution of fractures in tight sandstone reservoirs in low-amplitude structural areas have been systematically studied using a large number of cores, thin sections, paleomagnetism, FMI logging, acoustic emission, productivity data, and finite element method. The research results showed that the Yanchang Formation in the study area mainly develop high-angle and vertical fractures, which were formed by regional tectonic shearing. Fractures are mainly developed in the fine-grained and ultra-fine-grained sandstones of the distributary channel and estuary bar microfacies, while the fractures in the medium-grained sandstones of the distributary channel and the mudstones of the distributary bay are relatively underdeveloped. The core fractures and micro-fractures of the Yanchang Formation all have the regional distribution characteristics, and the fracture strikes are mainly between NE50° and NE 70°. Moreover, the finite element method was used to predict the fractures in the target layer, and the prediction results are consistent with the actual distribution results of the fractures. The coupling analysis of fractures and tight oil sandstone distribution showed that the existence of fractures provided conditions for the accumulation of hydrocarbons in the Yanchang Formation. The confluence and turning areas of the river channels were repeatedly scoured by river water, and the rocks were brittle and easy to form fractures. The thickness of the fractured sandstone in these areas is usually greater than 0.4 m. Moderately developed fracture zones are prone to form hydrocarbon accumulation “sweet spots,” and the fracture indexes of these areas are usually distributed between 0.8 and 1.2. However, when the fracture index exceeds 1.2, over-developed fractures are unfavorable for the accumulation of hydrocarbons.

2010 ◽  
Vol 44-47 ◽  
pp. 2931-2934
Author(s):  
Chun Ling Wu ◽  
Bang Yan Ye

Ultra-fine grained chips with higher hardness and strength than bulk can be produced by severe plastic deformation during orthogonal metal cutting. A finite element method was developed to characterize the distribution of stress, strain, strain rate and temperature in the deformation area at different rake angles and cutting velocities. The coefficient of friction in the tool-chip interface is approximately obtained according model of mean coefficient of friction which is based on experiments in any machining conditions. The formation mechanics of ultra-fine grained chip is discussed and effect of rake angle on microstructure of chips is highlighted. The results of experiment and modeling have shown that chip materials with ultra-fine grained and high hardness can be produced with more negative tool rake angle at some lower cutting velocity.


2007 ◽  
Vol 551-552 ◽  
pp. 347-353
Author(s):  
K. Lei ◽  
Kai Feng Zhang ◽  
M.J. Tong

Scale effects in the high temperature gas pressure forming of electrodeposited fine-grained copper thin sheets were investigated by a series of tests at various forming temperatures and die apertures. The average as-deposited copper grain size was 5 μm. The geometrical parameters of the bugling die system and the thickness of copper sheet varied in proportion. Different radius hemisphere parts from 0.5mm to 5mm were obtained at a strain rate of 5.0×10−4 s−1, which was controlled by pressure forces curves determined in terms of a finite element method (FEM) based on constitutive equation proposed by Backoften in 1964. The experimental relative bulging height (RBH) values were measured, and compared with that predicted by the same finite element method (FEM). It was found that the experimental values of large scale parts approach to simulated values, whereas the experimental values of small scale parts were quite different from simulated values. In order to explain these phenomena, a grain-rotation-weakened mechanism was proposed.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document