scholarly journals Progress on the Function and Application of Thymosin β4

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Xing ◽  
Yumeng Ye ◽  
Hongyan Zuo ◽  
Yang Li

Thymosin β4 (Tβ4) is a multifunctional and widely distributed peptide that plays a pivotal role in several physiological and pathological processes in the body, namely, increasing angiogenesis and proliferation and inhibiting apoptosis and inflammation. Moreover, Tβ4 is effectively utilized for several indications in animal experiments or clinical trials, such as myocardial infarction and myocardial ischemia-reperfusion injury, xerophthalmia, liver and renal fibrosis, ulcerative colitis and colon cancer, and skin trauma. Recent studies have reported the potential application of Tβ4 and its underlying mechanisms. The present study reveals the progress regarding functions and applications of Tβ4.

Author(s):  
Fengyun Zhou ◽  
Ting Feng ◽  
Xiangqi Lu ◽  
Huicheng Wang ◽  
Yangping Chen ◽  
...  

Abstract Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.


Author(s):  
NEELAM KUMARI ◽  
AJAY SINGH KUSHWAH

Objective: The relative risk of coronary heart disease in diabetic patients is more than in non-diabetic population. The present study was undertaken to explore the cardioprotective effect of Naringin on ischemia-reperfusion injury in the diabetic model of rat. Methods: Adult Wistar rats (either sex) divided into six groups. Diabetes was induced by 5 weeks combine exposure to a high-fat diet with a low dose of streptozotocin (30 mg/kg i.p.), administered on the 1st day of starting of the 5th week. Naringin treatment 25 mg/kg and 50 mg/kg was given simultaneously for 5 weeks. On the 36th day, the study animals were subjected to induction myocardial ischemia-reperfusion injury induced by the ligation of the left anterior descending coronary artery ligation in anesthetizing rat. Serum glucose level and cholesterol level measured before performing of ischemic reperfusion. After reperfusion injury, the animals were sacrificed and estimate change in the heart in the course of biochemical alterations, in creatine kinase-muscle/ brain (CK-MB) and lactate dehydrogenase, lipid peroxidation (LPO), glutathione (GSH), superoxide dismutase (SOD) and infarct size in the heart. Results and Conclusion: Naringin treatment significantly reduced the body weight, blood glucose, cholesterol, cardiac injury biomarkers, and LPO level and increased in antioxidant (GSH and SOD) level and also significantly increased in mean arterial pressure heart rate, reduced the myocardial infarction size. The present study concludes that Naringin 50 mg/kg being more prominent action to reduce the cardiotoxicity risk in ischemia-reperfusion injury state and increases myocardial susceptibility through having more prominent antioxidant potential properties.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Shahid Baba ◽  
Deqing zhang ◽  
David Hoetker ◽  
Yiru Guo ◽  
Aruni Bhatnagar

Even though myocardial ischemia/reperfusion (I/R) remains the leading cause of death, the underlying mechanisms remain incompletely understood. Increased formation of reactive carbonyl has been shown to be a common biochemical feature of I/R injury. These carbonyls are generated from the oxidation of proteins and membrane lipids. Reactive carbonyls such as methylglyoxal are generated from increased glycolytic activity during ischemia. Previous work in our lab has shown that the endogenous dipeptide carnosine (β-alanine-histidine) quenches both protein and lipid derived carbonyls. It can also buffer changes in intracellular pH and chelate metals that catalyze ROS production. In the heart, carnosine is synthesized by the ATP grasp enzyme (ATPGD1). Hence, we examined whether overexpression of ATPGD1 could increase carnosine synthesis in the heart and attenuate I/R injury. To overexpress ATPGD1, we generated mice in which the expression of the transgene was driven by cardiospecific α-MHC promoter. Two different ATPGD1Tg mouse lines were generated, which showed 10-15 fold higher abundance of ATPGD1 protein in the heart compared with their wild-type (WT) littermates. Cardiac levels of the histidyl dipeptides anserine and carnosine were approximately 100 fold higher in the ATPGD1Tg than WT mice hearts (WT: anserine 1.8±0.3 pmoles/mg protein, carnosine 6±1 pmoles/mg protein; ATPGD1-Tg: anserine 114±15 pmoles/mg protein, carnosine 615±44 pmoles/mg protein). No changes in the levels of these dipeptides were observed in other tissues of the ATPGD1Tg mice. Echocardiographic analysis showed that ATPGD1 overexpression did not affect cardiac function. When subjected to 30 min of coronary occlusion followed by 24 h of reperfusion, the infarct size was significantly lower in ATPGD1Tg than WT mice. Infarct size as the area of risk of left ventricle was 59±3.02% in WT mice and 38±2.73% in the ATPGD1-Tg mice (p<0.05 vs WT; n=7-8), indicating that increasing carnosine levels attenuates myocardial I/R injury. These findings reveal a novel cardioprotective role of endogenous histidyl dipeptides in decreasing I/R injury and suggest that treatment with such peptides may be a potential therapy for decreasing myocardial I/R injury and its progression of heart failure.


Sign in / Sign up

Export Citation Format

Share Document