scholarly journals Shifts in Soil Bacterial Communities as a Function of Carbon Source Used During Anaerobic Soil Disinfestation

Author(s):  
Amisha T. Poret-Peterson ◽  
Sebastian Albu ◽  
Ali E. McClean ◽  
Daniel A. Kluepfel
2018 ◽  
Vol 2 (3) ◽  
pp. 138-150 ◽  
Author(s):  
Anna L. Testen ◽  
Sally A. Miller

Soilborne disease complexes are an emerging constraint in protected culture tomato production systems in the Midwestern United States. Diseases in these complexes include Verticillium wilt (Verticillium dahliae), black dot root rot (Colletotrichum coccodes), corky root rot (Pyrenochaeta lycopersici), and root knot (Meloidogyne spp.). Anaerobic soil disinfestation (ASD) may be a viable, environmentally benign strategy for managing these complexes. Soils from two farms in Ohio were used to determine the impacts of ASD, using wheat bran, molasses, or ethanol as carbon sources, on soilborne diseases and soil bacterial communities. ASD with wheat bran or ethanol amendments led to significantly reduced tomato root rot severity, while nematode galling damage was significantly reduced following ASD with any carbon source compared with nontreated controls. When ethanol was used as a carbon source in ASD, the colonization of tomato roots by P. lycopersici and C. coccodes was observed less frequently than in control roots. A high throughput sequencing approach was used to characterize soil bacterial communities following ASD. Carbon source and soil origin influenced the composition of bacterial communities in soils treated with ASD. Bacterial community diversity decreased following ASD with wheat bran in all soils tested and following ASD with ethanol in soils from one farm. The abundance of bacteria in the phylum Firmicutes generally increased significantly following ASD, while the abundance of those in the phyla Acidobacteria, Actinobacteria, Chloroflexi, and Plantomycetes generally decreased following ASD. These findings provide insight into the impacts of ASD on microbial communities and soilborne diseases and will be used to optimize ASD as a tool for Midwestern vegetable growers.


2017 ◽  
Vol 63 (5) ◽  
pp. 392-401 ◽  
Author(s):  
Wei Sun ◽  
Xun Qian ◽  
Jie Gu ◽  
Xiao-Juan Wang ◽  
Yang Li ◽  
...  

Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%–6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.


AMB Express ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 46 ◽  
Author(s):  
Subrata Mowlick ◽  
Takashi Inoue ◽  
Toshiaki Takehara ◽  
Nobuo Kaku ◽  
Katsuji Ueki ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Te Lin ◽  
Yu-Fei Lin ◽  
Isheng J. Tsai ◽  
Ed-Haun Chang ◽  
Shih-Hao Jien ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document