scholarly journals Food Web Structure and Trophic Dynamics of a Fish Community in an Ephemeral Floodplain Lake

Author(s):  
Richard A. Peel ◽  
Jaclyn M. Hill ◽  
Geraldine C. Taylor ◽  
Olaf L. F. Weyl
2020 ◽  
Vol 653 ◽  
pp. 153-166
Author(s):  
SSH Poiesz ◽  
JIJ Witte ◽  
HW van der Veer

The food web structure of a coastal fish community (western Dutch Wadden Sea) was studied based on stomach content data from samples collected between 2010 and 2018. In total, 54 fish species were caught and 72 different prey items were identified. Fish species consumed from only a few up to >30 different prey species, suggesting the presence of both opportunistic and more specialized feeders. We found no significant differences between years or switches in food source with fish size. The trophic positions of the Wadden Sea fish community ranged from 2.0 to 4.7, with most trophic positions above 3.0. In the past, (near)-resident species were the most abundant guild in spring, and juvenile marine migrants in autumn. At present, all guilds are present in similar but low abundances. The (near)-resident community consisted of about 20 species that fed primarily on amphipod crustaceans, brown shrimps and juvenile herring. There was only a slight overlap in diet with the group of juvenile marine migrants (5 species of juvenile flatfishes and clupeids), whose preferred prey were copepods, polychaetes and brown shrimps. About 15 species of marine seasonal visitors showed an overlap in diet with both the (near)-resident and the juvenile marine migrants, especially for brown shrimps and to a lesser extent herring and gobies. Our results illustrate (1) the pivotal position of a few key prey species (amphipod crustaceans, brown shrimps, juvenile herring and gobies) for the coastal Wadden Sea fishes and (2) that the substantial prey overlap in the diet of some predators cannot exclude intra- and inter-specific competition among these predators.


Hydrobiologia ◽  
2010 ◽  
Vol 663 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Carlos I. Molina ◽  
François-Marie Gibon ◽  
Thierry Oberdorff ◽  
Eduardo Dominguez ◽  
Julio Pinto ◽  
...  

2019 ◽  
Vol 43 (3) ◽  
pp. 615-629 ◽  
Author(s):  
Tae Hee Park ◽  
Chung-Il Lee ◽  
Chang-Keun Kang ◽  
Jung Hyun Kwak ◽  
Sang Heon Lee ◽  
...  

2017 ◽  
Vol 27 (4) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joshua J. Thoresen ◽  
David Towns ◽  
Sebastian Leuzinger ◽  
Mel Durrett ◽  
Christa P. H. Mulder ◽  
...  

2020 ◽  
Vol 106 (2) ◽  
pp. 69-85
Author(s):  
Matthew J. Young ◽  
Frederick Feyrer ◽  
Paul R. Stumpner ◽  
Veronica Larwood ◽  
Oliver Patton ◽  
...  

2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Sign in / Sign up

Export Citation Format

Share Document