scholarly journals Intensive Agriculture as Climate Change Adaptation? Economic and Environmental Tradeoffs in Securing Rural Livelihoods in Tanzanian River Basins

2021 ◽  
Vol 9 ◽  
Author(s):  
Idil Ires

Tanzania is one of the East African countries most vulnerable to climate change impacts. Droughts and floods in 2015–16 had devastating effects on food production, crop failures and livestock deaths reaching record levels. One of the underlying projects of the Tanzanian government to mitigate these impacts is the Southern Agricultural Growth Corridors of Tanzania (SAGCOT), an area spanning the country’s largest river basin, the Rufiji, where it collaborates with national and transnational companies to intensify irrigated crop production. Irrigation, drought-tolerant seeds, and employment are three of the key government-advised strategies to help smallholders increase crop yield, adapt to climate change, and alleviate poverty through the corridor. However, little research is available on whether these goals have been achieved. This paper aims to contribute to the literature by assessing harvest and income levels following the 2015–16 drought. Through fieldwork conducted in 2016–17 in Usangu, a key paddy production area in the Great Ruaha Basin within SAGCOT, data is collected from documents and 114 informants. This study finds that irrigation did not significantly contribute to rising paddy production in the case study. Prioritizing the downstream national park and the energy sector, the government periodically cut down the water access of the case-study irrigation scheme, which exacerbated water stress. Moreover, though farmers widely shifted to intensive farming and used hybrid seeds, mainly, the high-income groups ensured and increased the crop yield and profit. The-low income groups encountered crop failure and, due to rising production costs, debt. Many of them left farming, impoverished, and sought to secure subsistence through wage laboring. This study discusses the shortcomings of the transitions from traditional to intensive farming and from farming to employment as climate change adaptation strategies and draws critical policy-relevant conclusions.

2021 ◽  
Vol 3 (2) ◽  
pp. 46-55
Author(s):  
J. N. Eze ◽  
B. Z. Salihu ◽  
U. A. Gbanguba ◽  
M. Alfa ◽  
N. N. Ayanniyi ◽  
...  

The net potential effect of severe changes in rainfall pattern disrupts crop production leading to food insecurity, loss of jobs, and poverty. Crop production in Niger State is predominantly rain-fed, thus, exposing this major livelihood activity to the variability of rainfall. The study examined the impact of rainfall variability and its consequences on crop production. This is to integrate climate change adaptation options into agricultural activities. Strategies for climate change adaptation options in the study area have often been made without experimental foundations placed on the level of rainfall variability and its implications on crop production. To achieve this, a climatic index (CI) analysis of rainfall was employed to ascertain the level of rainfall extremes occurrences resulting from rainfall variability using standard deviation as a tool for rationalization. The study also used crop yield to test the relationship between the yield and rainfall characteristics for thirty years (1990-2019). Rainfall data and crop yield (soybean, maize, and sorghum) were collected. The data were analysed using statistical and climatic index analyses. The results show that there were various degrees of rainfall extremes that occurred (from mild to severe dry spell and mild to severe wet spell). Moreover, the regression analysis shows that F-values > p-values. Consequently, the occurrences of severe wet spells and mild to severe dry spells impacted negatively on crop production, which undermines food security. Based on the findings, recommendations were made to mainstream the adaptation options.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Guillaume Peterson St-Laurent ◽  
Lauren E. Oakes ◽  
Molly Cross ◽  
Shannon Hagerman

AbstractConservation practices during the first decade of the millennium predominantly focused on resisting changes and maintaining historical or current conditions, but ever-increasing impacts from climate change have highlighted the need for transformative action. However, little empirical evidence exists on what kinds of conservation actions aimed specifically at climate change adaptation are being implemented in practice, let alone how transformative these actions are. In response, we propose and trial a novel typology—the R–R–T scale, which improves on existing concepts of Resistance, Resilience, and Transformation—that enables the practical application of contested terms and the empirical assessment of whether and to what extent a shift toward transformative action is occurring. When applying the R–R–T scale to a case study of 104 adaptation projects funded since 2011, we find a trend towards transformation that varies across ecosystems. Our results reveal that perceptions about the acceptance of novel interventions in principle are beginning to be expressed in practice.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Yuan Gao ◽  
Anyu Zhang ◽  
Yaojie Yue ◽  
Jing’ai Wang ◽  
Peng Su

Suitable land is an important prerequisite for crop cultivation and, given the prospect of climate change, it is essential to assess such suitability to minimize crop production risks and to ensure food security. Although a variety of methods to assess the suitability are available, a comprehensive, objective, and large-scale screening of environmental variables that influence the results—and therefore their accuracy—of these methods has rarely been explored. An approach to the selection of such variables is proposed and the criteria established for large-scale assessment of land, based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and even at mid latitudes. The total area suitable for maize globally and in most major maize-producing countries will decrease, the decrease being particularly steep in those regions optimally suited for maize at present. Compared with earlier research, the method proposed in the present paper is simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of climate change.


2017 ◽  
Vol 76 ◽  
pp. 113-123 ◽  
Author(s):  
Timothy David Ramm ◽  
Sonia Graham ◽  
Christopher John White ◽  
Christopher Stephen Watson

Sign in / Sign up

Export Citation Format

Share Document