scholarly journals Homeostatic Response to Three Years of Experimental Warming Suggests High Intrinsic Natural Resistance in the Páramos to Warming in the Short Term

2021 ◽  
Vol 9 ◽  
Author(s):  
Eloisa Lasso ◽  
Paola Matheus-Arbeláez ◽  
Rachel E. Gallery ◽  
Carol Garzón-López ◽  
Marisol Cruz ◽  
...  

Páramos, tropical alpine ecosystems, host one of the world’s most diverse alpine floras, account for the largest water reservoirs in the Andes, and some of the largest soil carbon pools worldwide. It is of global importance to understand the future of this extremely carbon-rich ecosystem in a warmer world and its role on global climate feedbacks. This study presents the result of the first in situ warming experiment in two Colombian páramos using Open-Top Chambers. We evaluated the response to warming of several ecosystem carbon balance-related processes, including decomposition, soil respiration, photosynthesis, plant productivity, and vegetation structure after 3 years of warming. We found that OTCs are an efficient warming method in the páramo, increasing mean air temperature by 1.7°C and mean daytime temperature by 3.4°C. The maximum air temperature differences between OTC and control was 23.1°C. Soil temperature increased only by 0.1°C. After 3 years of warming using 20 OTC (10 per páramo) in a randomized block design, we found no evidence that warming increased CO2 emissions from soil respiration, nor did it increase decomposition rate, photosynthesis or productivity in the two páramos studied. However, total C and N in the soil and vegetation structure are slowly changing as result of warming and changes are site dependent. In Sumapaz, shrubs, and graminoids cover increased in response to warming while in Matarredonda we observed an increase in lichen cover. Whether this change in vegetation might influence the carbon sequestration potential of the páramo needs to be further evaluated. Our results suggest that páramos ecosystems can resist an increase in temperature with no significant alteration of ecosystem carbon balance related processes in the short term. However, the long-term effect of warming could depend on the vegetation changes and how these changes alter the microbial soil composition and soil processes. The differential response among páramos suggest that the response to warming could be highly dependent on the initial conditions and therefore we urgently need more warming experiments in páramos to understand how specific site characteristics will affect their response to warming and their role in global climate feedbacks.

2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2007 ◽  
Vol 34 (1) ◽  
Author(s):  
Markus Reichstein ◽  
Dario Papale ◽  
Riccardo Valentini ◽  
Marc Aubinet ◽  
Christian Bernhofer ◽  
...  

2020 ◽  
Author(s):  
Marcos Fernández-Martínez ◽  
Jordi Sardans ◽  
Josep Peñuelas ◽  
Ivan Janssens

<p>Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.</p>


2011 ◽  
Vol 141 (3-4) ◽  
pp. 342-349 ◽  
Author(s):  
Carmela B.M. Arevalo ◽  
Jagtar S. Bhatti ◽  
Scott X. Chang ◽  
Derek Sidders

2016 ◽  
Vol 554-555 ◽  
pp. 293-302 ◽  
Author(s):  
Xi Li ◽  
Yo Toma ◽  
Jagadeesh Yeluripati ◽  
Shinya Iwasaki ◽  
Sonoko D. Bellingrath-Kimura ◽  
...  

2020 ◽  
Vol 26 (12) ◽  
pp. 7067-7078
Author(s):  
Marcos Fernández‐Martínez ◽  
Jordi Sardans ◽  
Talie Musavi ◽  
Mirco Migliavacca ◽  
Maitane Iturrate‐Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document