scholarly journals Effects of Climate Change vs. Grazing Exclusion on Species Diversity Over 18 Years Along an Elevation Gradient in the European Alps

2021 ◽  
Vol 9 ◽  
Author(s):  
Rüdiger Kaufmann ◽  
Roland Mayer ◽  
Nikolaus Schallhart ◽  
Brigitta Erschbamer

Climate change was already shown to increase species numbers in high elevations. In contrast, grazing might interfere with climate change effects. To disentangle both the effects remains a major challenge of alpine ecology. The present study investigated both the effects on species diversity along an elevation gradient in the Austrian Central Alps. We aimed to answer the following questions: How do species diversity and frequency of subalpine–alpine–subnival plant communities change in grazed sites with time? Do competitive plant species increase in the communities? How does grazing exclusion affect species diversity, functional groups, and strategy types? Are environmental changes (temperature, sunshine duration, precipitation) responsible for diversity changes or does grazing override climate effects? The study was carried out for 18 years along an elevation gradient from 1,958 to 2,778 m a.s.l. at Obergurgl (Tyrol, Austria), including six different plant communities. A total of 11 grazing exclusions were established. At each community, the frequency of the species was counted in 1 m2 plots yearly or at least every 3–4 years. Environmental data were obtained from the weather station Obergurgl. Changes of the community parameters and the species composition were analyzed by partial redundancy analyses and mixed-effect models. Species diversity increased with time at all grazed sites, but this increase was suppressed under grazing exclusion. Grazing exclusion effects became pronounced after 5 years. The most consistent result was the increase of bryophytes throughout. At the subalpine grassland, tall-growing species expanded in the exclosures; at the upper alpine Carex curvula grassland, snow bed species decreased with grazing exclusion. Among the environmental factors, sunshine duration of the previous year’s autumn quartal was found to be the essential variable for the changes. We concluded that diversity increases in grazed communities of the Austrian Central Alps can be attributed to climate change. An indication of slightly reduced and altered weather effects under grazing exclusion was found.

2018 ◽  
Vol 50 ◽  
pp. 02006
Author(s):  
Lukas Egarter Vigl ◽  
Arno Schmid ◽  
Franz Moser ◽  
Andrea Balotti ◽  
Erwin Gartner ◽  
...  

The advent of global climate change has major impacts upon viticultural production. Changes in the spatial limits of wine production are already being observed around the globe; vineyards are now viable at higher elevations and more polar latitudes. Climatic conditions are also threatening production in existing appellations. Therefore, sound management strategies are vital to maintain high-quality wines and varietal typicity, and to respond to changing market conditions. In mountainous regions such as the European Alps, new production areas at higher elevations are increasingly considered to be a promising solution. However, the suitability of viticulture in general, and even specific varieties of wine grapes, can change drastically across short distances in complex mountain terrain. Variations in temperature and radiation accumulation directly influence plant suitability, yield quantity, and quality. This paper shares initial findings from the REBECKA Project, a transnational research initiative designed to assess the impacts of climate change on mountain viticulture and wine quality in South Tyrol (Italy) and Carinthia (Austria). A three-part approach is utilized to better assess these dynamics: (1) historical crop yield data from local vineyards are assessed, (2) plant phenology stages and polyphenolic compounds of the Pinot Noir variety are analyzed along an elevation gradient and related to bioclimatic indices, and (3) a suitability map is developed that considers small-scale topographic and agro-environmental conditions. Taken together, these components contribute in clarifying many of the opportunities and threats facing high altitude viticulture in a changing world and provide new insights for sound decision-making in alpine vineyards.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4941 ◽  
Author(s):  
Rommel R. Rojas ◽  
Antoine Fouquet ◽  
Santiago R. Ron ◽  
Emil José Hernández-Ruz ◽  
Paulo R. Melo-Sampaio ◽  
...  

Amphibians are probably the most vulnerable group to climate change and climate-change associate diseases. This ongoing biodiversity crisis makes it thus imperative to improve the taxonomy of anurans in biodiverse but understudied areas such as Amazonia. In this study, we applied robust integrative taxonomic methods combining genetic (mitochondrial 16S, 12S and COI genes), morphological and environmental data to delimit species of the genusAmazophrynella(Anura: Bufonidae) sampled from throughout their pan-Amazonian distribution. Our study confirms the hypothesis that the species diversity of the genus is grossly underestimated. Our analyses suggest the existence of eighteen linages of which seven are nominal species, three Deep Conspecific Lineages, one Unconfirmed Candidate Species, three Uncategorized Lineages, and four Confirmed Candidate Species and described herein. We also propose a phylogenetic hypothesis for the genus and discuss its implications for historical biogeography of this Amazonian group.


2021 ◽  
Vol 9 ◽  
Author(s):  
Roxibell C. Pelayo ◽  
Luis D. Llambí ◽  
Luis E. Gámez ◽  
Yeni C. Barrios ◽  
Lirey A. Ramirez ◽  
...  

Analyzing plant phenology and plant–animal interaction networks can provide sensitive mechanistic indicators to understand the response of alpine plant communities to climate change. However, monitoring data to analyze these processes is scarce in alpine ecosystems, particularly in the highland tropics. The Andean páramos constitute the coldest biodiversity hotspot on Earth, and their species and ecosystems are among the most exposed and vulnerable to the effects of climate change. Here, we analyze for the first time baseline data for monitoring plant phenological dynamics and plant–pollinator networks along an elevation gradient between 4,200 and 4,600 m asl in three mountain summits of the Venezuelan Andes, which are part of the GLORIA monitoring network. We estimated the presence and density of plants with flowers in all the summits and in permanent plots, every month for 1 year. Additionally, we identified pollinators. We calculated a phenological overlap index between species. We summarized the plant–pollinator interactions as a bipartite matrix and represented a quantitative plant–pollinator network, calculating structural properties (grade, connectance, nestedness, and specialization). We also evaluated whether the overall network structure was influenced by differences in sampling effort, changes in species composition between summits, and phenology of the plant species. Finally, we characterized the pollination syndrome of all species. Flowering showed a marked seasonality, with a peak toward the end of the wet season. The overall phenological overlap index was low (0.32), suggesting little synchrony in flowering among species. Species richness of both plants and pollinators decreased along the elevation gradient. Flies, bumblebees, and hummingbirds were the most frequent pollinators in the network, while entomophily and anemophily were the prevailing pollination syndromes. The interaction network in all summits showed high connectance values, significant specialization (H2), and low nestedness. We did not find a significant effect of sampling effort, summit plant species composition, or plant phenology on network structure. Our results indicate that these high tropical alpine plant communities and their plant-pollination networks could be particularly vulnerable to the loss of species in climate change scenarios, given their low species richness and functional redundancy coupled with a high degree of specialization and endemism.


2014 ◽  
Vol 60 (2) ◽  
pp. 119-132 ◽  
Author(s):  
C Hartl-Meier ◽  
C Zang ◽  
C Dittmar ◽  
J Esper ◽  
A Göttlein ◽  
...  

2014 ◽  
Vol 37 (11) ◽  
pp. 979-987 ◽  
Author(s):  
Jun-Qiang CHEN ◽  
Rui ZHANG ◽  
Yao-Chen HOU ◽  
Li-Na MA ◽  
Lu-Ming DING ◽  
...  

Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Author(s):  
George P Malanson ◽  
Michelle L Talal ◽  
Elizabeth R Pansing ◽  
Scott B Franklin

Current research on vegetation makes a difference in people’s lives. Plant community classification is a backbone of land management, plant communities are changing in response to anthropogenic drivers, and the processes of change have impacts on ecosystem services. In the following progress report, we summarize the status of classification and recent research on vegetation responses to pollution, especially nitrogen deposition, invasive species, climate change, and land use and direct exploitation. Two areas with human feedbacks are underscored: fire ecology and urban ecology. Prominent questions at the current research frontier are highlighted with attention to new perspectives.


Vegetatio ◽  
1980 ◽  
Vol 43 (1-2) ◽  
pp. 59-72 ◽  
Author(s):  
C. Houssard ◽  
J. Escarr� ◽  
F. Bomane

Sign in / Sign up

Export Citation Format

Share Document