scholarly journals Toward Human-Centered Design of Automated Vehicles: A Naturalistic Brake Policy

2021 ◽  
Vol 2 ◽  
Author(s):  
Yalda Rahmati ◽  
Arezoo Samimi Abianeh ◽  
Mahmood Tabesh ◽  
Alireza Talebpour

While safety is the ultimate goal in designing Connected and Automated Vehicles (CAVs), current automotive safety standards fail to explicitly define rules and regulations that ensure the safety of CAVs or those interacting with such vehicles. This study investigates CAV safety in mixed traffic environments with both human-driven and automated vehicles, focusing particularly on rear-end collisions at intersections. The central hypothesis is that the primary reason behind these crashes is the potential mismatch between CAVs’ braking decisions and human drivers’ expectations. To test this hypothesis, various Artificial Intelligence (AI) techniques, along with specialized statistical methods are adopted to learn and model the braking behavior of human drivers at intersections and compare the results to that of CAVs. Findings suggest systematical differences in CAVs’ and humans’ braking trajectories, revealing a mismatch between their braking patterns. Accordingly, a Markovian decision modeling framework is adopted to design a novel CAV braking profile that ensures 1) compatibility with human expectation, and 2) safe and comfortable maneuvers by CAVs in mixed driving environments. The findings of this study are expected to facilitate the development of higher levels of vehicle automation by providing guidelines to prevent rear-end collisions caused by existing differences in CAVs’ and humans’ braking strategies.

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
S. C. Calvert ◽  
W. J. Schakel ◽  
J. W. C. van Lint

With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.


2021 ◽  
Vol 152 ◽  
pp. 106006
Author(s):  
Iman Mahdinia ◽  
Amin Mohammadnazar ◽  
Ramin Arvin ◽  
Asad J. Khattak

2021 ◽  
Vol 6 (3) ◽  
pp. 43
Author(s):  
Konstantinos Gkoumas ◽  
Kyriaki Gkoktsi ◽  
Flavio Bono ◽  
Maria Cristina Galassi ◽  
Daniel Tirelli

Europe’s aging transportation infrastructure requires optimized maintenance programs. However, data and monitoring systems may not be readily available to support strategic decisions or they may require costly installations in terms of time and labor requirements. In recent years, the possibility of monitoring bridges by indirectly sensing relevant parameters from traveling vehicles has emerged—an approach that would allow for the elimination of the costly installation of sensors and monitoring campaigns. The advantages of cooperative, connected, and automated mobility (CCAM), which is expected to become a reality in Europe towards the end of this decade, should therefore be considered for the future development of iSHM strategies. A critical review of methods and strategies for CCAM, including Intelligent Transportation Systems, is a prerequisite for moving towards the goal of identifying the synergies between CCAM and civil infrastructures, in line with future developments in vehicle automation. This study presents the policy framework of CCAM in Europe and discusses the policy enablers and bottlenecks of using CCAM in the drive-by monitoring of transport infrastructure. It also highlights the current direction of research within the iSHM paradigm towards the identification of technologies and methods that could benefit from the use of connected and automated vehicles (CAVs).


Information ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Thierry Bellet ◽  
Aurélie Banet ◽  
Marie Petiot ◽  
Bertrand Richard ◽  
Joshua Quick

This article is about the Human-Centered Design (HCD), development and evaluation of an Artificial Intelligence (AI) algorithm aiming to support an adaptive management of Human-Machine Transition (HMT) between car drivers and vehicle automation. The general principle of this algorithm is to monitor (1) the drivers’ behaviors and (2) the situational criticality to manage in real time the Human-Machine Interactions (HMI). This Human-Centered AI (HCAI) approach was designed from real drivers’ needs, difficulties and errors observed at the wheel of an instrumented car. Then, the HCAI algorithm was integrated into demonstrators of Advanced Driving Aid Systems (ADAS) implemented on a driving simulator (dedicated to highway driving or to urban intersection crossing). Finally, user tests were carried out to support their evaluation from the end-users point of view. Thirty participants were invited to practically experience these ADAS supported by the HCAI algorithm. To increase the scope of this evaluation, driving simulator experiments were implemented among three groups of 10 participants, corresponding to three highly contrasted profiles of end-users, having respectively a positive, neutral or reluctant attitude towards vehicle automation. After having introduced the research context and presented the HCAI algorithm designed to contextually manage HMT with vehicle automation, the main results collected among these three profiles of future potential end users are presented. In brief, main findings confirm the efficiency and the effectiveness of the HCAI algorithm, its benefits regarding drivers’ satisfaction, and the high levels of acceptance, perceived utility, usability and attractiveness of this new type of “adaptive vehicle automation”.


2021 ◽  
Vol 13 (15) ◽  
pp. 8396
Author(s):  
Marc Wilbrink ◽  
Merle Lau ◽  
Johannes Illgner ◽  
Anna Schieben ◽  
Michael Oehl

The development of automated vehicles (AVs) and their integration into traffic are seen by many vehicle manufacturers and stakeholders such as cities or transportation companies as a revolution in mobility. In future urban traffic, it is more likely that AVs will operate not in separated traffic spaces but in so-called mixed traffic environments where different types of traffic participants interact. Therefore, AVs must be able to communicate with other traffic participants, e.g., pedestrians as vulnerable road users (VRUs), to solve ambiguous traffic situations. To achieve well-working communication and thereby safe interaction between AVs and other traffic participants, the latest research discusses external human–machine interfaces (eHMIs) as promising communication tools. Therefore, this study examines the potential positive and negative effects of AVs equipped with static (only displaying the current vehicle automation status (VAS)) and dynamic (communicating an AV’s perception and intention) eHMIs on the interaction with pedestrians by taking subjective and objective measurements into account. In a Virtual Reality (VR) simulator study, 62 participants were instructed to cross a street while interacting with non-automated (without eHMI) and automated vehicles (equipped with static eHMI or dynamic eHMI). The results reveal that a static eHMI had no effect on pedestrians’ crossing decisions and behaviors compared to a non-automated vehicle without any eHMI. However, participants benefit from the additional information of a dynamic eHMI by making earlier decisions to cross the street and higher certainties regarding their decisions when interacting with an AV with a dynamic eHMI compared to an AV with a static eHMI or a non-automated vehicle. Implications for a holistic evaluation of eHMIs as AV communication tools and their safe introduction into traffic are discussed based on the results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiawen Wang ◽  
Shaobo Li ◽  
Yining Lu ◽  
Lubang Wang

Using a cellular automaton model, this paper studied the evolution mechanism of traffic incidents affecting the capacity of urban expressway under the mixed traffic environment of manual driving and automatic driving. It showed that the length of the automated-driving early-warning zone could affect the capacity of expressway. Specifically, the early-warning zone is divided into an accelerate lane-changing area, a decelerate lane-changing area, and a forced lane-changing area. The areas vary according to the distance between the vehicle and the location of incident. Based on the study, this paper establishes a codirectional two-lane cellular automaton model. The analysis showed that the capacity of the urban expressway varies under different combinations of early-warning area length and division ratio of early-warning zone. In the case of two-lane reduction caused by traffic incidents, the capacity of the expressway is optimized when the length of early-warning zone is between 450 and 600 m, and the ratio of accelerate zone, decelerate zone, and forced zone to the length of early-warning zone is, respectively, 75%, 10%, and 15%. In addition, this study showed that the capacity will rise with the increase in automated vehicles.


2017 ◽  
Vol 2622 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Da Yang ◽  
Xiaoping Qiu ◽  
Lina Ma ◽  
Danhong Wu ◽  
Liling Zhu ◽  
...  

In recent years, automated vehicles have been developing rapidly, and some automated vehicles have begun to drive on highways. The market share of automated vehicles is expected to increase and will greatly affect traffic flow characteristics. This paper focuses on the mixed traffic flow of manual and automated vehicles. The study improves the existing cellular automaton model to capture the differences between manual vehicles and automated vehicles. Computer simulations are employed to analyze the characteristic variations in the mixed traffic flow under different automated vehicle proportions, lane change probabilities, and reaction times. Several new conclusions are drawn in the paper. First, with the increment of the proportion of automated vehicles, freeway capacity increases; the capacity increment is more significant for single-lane traffic than for two-lane traffic. Second, for single-lane traffic flow, reducing the reaction time of the automated vehicle can significantly improve road traffic capacity—as much as doubling it—and reaction time reduction has no obvious effect on the capacity of the two-lane traffic. Third, with the proportion increment of automated vehicles, lane change frequency reduces significantly. Fourth, when the density is 15 < ρ < 55 vehicles/km, the addition of 20% automated vehicles to a traffic flow that consisted of only manual vehicles can decrease congestion by up to 16.7%.


Sign in / Sign up

Export Citation Format

Share Document