scholarly journals The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses

2013 ◽  
Vol 4 ◽  
Author(s):  
Giorgio Santoni ◽  
Valerio Farfariello ◽  
Sonia Liberati ◽  
Maria B. Morelli ◽  
Massimo Nabissi ◽  
...  
2010 ◽  
Vol 112 (3) ◽  
pp. 729-741 ◽  
Author(s):  
John P. M. White ◽  
Mario Cibelli ◽  
Antonio Rei Fidalgo ◽  
Cleoper C. Paule ◽  
Faruq Noormohamed ◽  
...  

Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 322 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini

Recently, the finding of cancer stem cells in brain tumors has increased the possibilitiesfor advancing new therapeutic approaches with the aim to overcome the limits of current availabletreatments. In addition, a role for ion channels, particularly of TRP channels, in developing neuronsas well as in brain cancer development and progression have been demonstrated. Herein, we focuson the latest advancements in understanding the role of TRPV2, a Ca2+ permeable channel belongingto the TRPV subfamily in neurogenesis and gliomagenesis. TRPV2 has been found to be expressedin both neural progenitor cells and glioblastoma stem/progenitor-like cells (GSCs). In developingneurons, post-translational modifications of TRPV2 (e.g., phosphorylation by ERK2) are required tostimulate Ca2+ signaling and nerve growth factor-mediated neurite outgrowth. TRPV2overexpression also promotes GSC differentiation and reduces gliomagenesis in vitro and in vivo.In glioblastoma, TRPV2 inhibits survival and proliferation, and induces Fas/CD95-dependentapoptosis. Furthermore, by proteomic analysis, the identification of a TRPV2 interactome-basedsignature and its relation to glioblastoma progression/recurrence, high or low overall survival anddrug resistance strongly suggest an important role of the TRPV2 channel as a potential biomarkerin glioblastoma prognosis and therapy.


2021 ◽  
Vol 22 (7) ◽  
pp. 3360
Author(s):  
Mee-Ra Rhyu ◽  
Yiseul Kim ◽  
Vijay Lyall

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Huilong Luo ◽  
Xavier Declèves ◽  
Salvatore Cisternino

The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.


Author(s):  
Sanjeev K. Singh ◽  
M. S. Muthu ◽  
Ravindran Revand ◽  
M. B. Mandal

Background: Since long back, it has been a matter of discussion regarding the role of peripheral blood vessels in regulation of cardiorespiratory (CVR) system. Objective: The role of 5-HT3 and TRPV1 receptors present on perivascular nerves in elicitation of CVR reflexes was examined after intra-arterial instillation of bradykinin in urethane anesthetized rats. Materials and Methods: Femoral artery was cannulated retrogradely and was utilized for the instillation of saline/agonist/antagonist and recording of blood pressure (BP), using a double ported 24G cannula. BP, respiration and ECG were recorded for 30 min after bradykinin (1 µM) in the absence or presence of antagonists. Results: Instillation of bradykinin produced immediate hypotensive (40%), bradycardiac (17%), tachypnoeic (45%) and hyperventilatory (96%) responses of shorter latencies (5-8 s) favoring the neural mechanisms in producing the responses. In lignocaine (2%) pretreated animals, bradykinin-induced hypotensive (10%), bradycardiac (1.7%), tachypnoeic (13%) and hyperventilatory (13%) responses attenuated significantly. Pretreatment with ondansetron (100 µg/kg), 5-HT3-antagonist attenuated the hypotensive (10%), bradycardiac (1.7%), tachypnoeic (11%) and hyperventilatory (11%) responses significantly. Pretreatment with capsazepine (1 mg/kg), transient receptor potential vanilloid 1- antagonist blocked the hypotensive (5%), bradycardiac (1.2%), tachypnoeic (6%) and hyperventilatory (6%) responses significantly. Conclusion: In conclusion, presence of a nociceptive agent in the local segment of an artery evokes vasosensory reflex responses modulating CVR parameters involving TRPV1 and 5-HT3 receptors present on the perivascular sensory nerve terminals in anesthetized rats.


Sign in / Sign up

Export Citation Format

Share Document