scholarly journals Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade

2019 ◽  
Vol 10 ◽  
Author(s):  
Alice Mougel ◽  
Magali Terme ◽  
Corinne Tanchot
Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 317 ◽  
Author(s):  
Pournima Kadam ◽  
Sherven Sharma

(1) Background: Targeting inhibitory immune checkpoint molecules has highlighted the need to find approaches enabling the activation of immune responses against cancer. Therapeutic vaccination, which induces specific immune responses against tumor antigens (Ags), is an attractive option. (2) Methods: Utilizing a K-RasG12Dp53null murine lung cancer model we determined tumor burden, tumor-infiltrating T cell (TIL) cytolysis, immunohistochemistry, flow cytometry, and CD4 and CD8 depletion to evaluate the efficacy of PD-1 blockade combined with CCL21-DC tumor lysate vaccine. (3) Results: Anti-PD-1 plus CCL21-DC tumor lysate vaccine administered to mice bearing established tumors (150 mm3) increased expression of perforin and granzyme B in the tumor microenvironment (TME), increased tumor-infiltrating T cell (TIL) activity, and caused 80% tumor eradication. Mice with treatment-induced tumor eradication developed immunological memory, enabling tumor rejection upon challenge and cancer-recurrence-free survival. The depletion of CD4 or CD8 abrogated the antitumor activity of combined therapy. PD-1 blockade or CCL21-DC tumor lysate vaccine monotherapy reduced tumor burden without tumor eradication. (4) Conclusion: Immune checkpoint blockade promotes the activity of the therapeutic cancer vaccine. PD-1 blockade plus CCL21-DC tumor lysate vaccine therapy could benefit lung cancer patients.


2018 ◽  
Author(s):  
Alicia C. Smart ◽  
Claire A. Margolis ◽  
Harold Pimentel ◽  
Meng Xiao He ◽  
Diana Miao ◽  
...  

Personalized cancer vaccine strategies directed at tumor neoantigens derived from somatic mutations in the DNA are currently under prospective evaluation1, 2. Alterations in tumor RNA, rather than DNA, may also represent a previously-unexplored source of neoantigens. Here, we show that intron retention, a widespread feature of cancer transcriptomes3, 4, represents a novel source of tumor neoantigens. We developed an in silico approach to identify retained intron neoantigens from RNA sequencing data and applied this methodology to tumor samples from patients with melanoma treated with immune checkpoint blockade5, 6, discovering that the retained intron neoantigen burden in these samples augments the DNA-derived, somatic neoantigen burden. We validated the existence of retained intron derived neoantigens by implementing this technique on cancer cell lines with mass spectrometry-derived immunopeptidome data7, 8, revealing that retained intron neoantigens were complexed with MHC I experimentally. Unexpectedly, we observed a trend toward lack of clinical benefit from immune checkpoint blockade in high retained intron load-tumors, which harbored transcriptional signatures consistent with cell cycle dysregulation and DNA damage repair. Our results demonstrate the contribution of transcriptional dysregulation to the overall burden of tumor neoantigens, provide a foundation for augmenting personalized cancer vaccine development with a new class of tumor neoantigens, and demonstrate how global transcriptional dysregulation may impact selective response to immune checkpoint blockade.Statement of significanceWe developed and experimentally validated a computational pipeline to identify a novel class of tumor neoantigens derived from RNA-based intron retention, which is prevalent throughout cancer transcriptomes. The discovery of transcriptionally-derived tumor neoantigens expands the tumor immunopeptidome and contributes potential substrates for personalized cancer vaccine development.


2018 ◽  
Vol 80 (1) ◽  
pp. 51-55
Author(s):  
Ai KAJITA ◽  
Osamu YAMASAKI ◽  
Tatsuya KAJI ◽  
Hiroshi UMEMURA ◽  
Keiji IWATSUKI

2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


Sign in / Sign up

Export Citation Format

Share Document