scholarly journals IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases

2019 ◽  
Vol 10 ◽  
Author(s):  
Yvette Wooff ◽  
Si Ming Man ◽  
Riemke Aggio-Bruce ◽  
Riccardo Natoli ◽  
Nilisha Fernando
2018 ◽  
Vol 152 (2) ◽  
pp. 58-63
Author(s):  
Kenji Sakamoto ◽  
Asami Mori ◽  
Kunio Ishii ◽  
Tsutomu Nakahara

Author(s):  
Alejandra Daruich ◽  
Thara Jaworski ◽  
Hugues Henry ◽  
Marta Zola ◽  
Jenny Youale ◽  
...  

AbstractRhegmatogenous retinal detachment (RD) is a threatening visual condition and a human disease model for retinal degenerations. Despite successful reattachment surgery, vision does not fully recover, due to subretinal fluid accumulation and subsequent photoreceptor cell death, through mechanisms that recapitulate those of retinal degenerative diseases. Hydrophilic bile acids are neuroprotective in animal models, but whether they can be used orally for retinal diseases is unknown. Ursodeoxycholic acid (UDCA) being approved for clinical use (e.g., in cholestasis), we have evaluated the ocular bioavailability of oral UDCA, administered to patients before RD surgery. The level of UDCA in ocular media correlated with the extent of blood retinal barrier disruption, evaluated by the extent of detachment and the albumin concentration in subretinal fluid. UDCA, at levels measured in ocular media, protected photoreceptors from apoptosis and necrosis in rat retinal explants, an ex vivo model of RD. The subretinal fluid from UDCA-treated patients, collected during surgery, significantly protected rat retinal explants from cell death, when compared to subretinal fluid from control patients. Pan-transcriptomic analysis of the retina showed that UDCA upregulated anti-apoptotic, anti-oxidant, and anti-inflammatory genes. Oral UDCA is a potential neuroprotective adjuvant therapy in RD and other retinal degenerative diseases and should be further evaluated in a clinical trial.


Author(s):  
Yvette Wooff ◽  
Adrian V. Cioanca ◽  
Joshua A. Chu-Tan ◽  
Riemke Aggio-Bruce ◽  
Ulrike Schumann ◽  
...  

1.1.AbstractPurposePhotoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases, however the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles in the modulation of immune responses. EVs including exosomes encapsulate and transfer nucleic acids, including microRNA (miRNA), to recipient cells which in disease may result in dysfunctional immune responses and a loss of homeostatic regulation. In this work we investigated the role of isolated retinal small-medium sized EV (s-mEV) which includes exosomes in both the healthy and degenerating retina.MethodsIsolated s-mEV from normal retinas were characterized using dynamic light scattering, transmission electron microscopy and western blotting, and quantified across 5 days of photo-oxidative damage-induced degeneration using nanotracking analysis. Small RNAseq was used to characterize the miRNA cargo of retinal s-mEV isolated from healthy and damaged retinas. Finally, the effect of exosome inhibition on cell-to-cell miRNA transfer and immune modulation was conducted using systemic daily administration of exosome inhibitor GW4869 and in situ hybridization of s-mEV-abundant miRNA, miR-124-3p. Electroretinography and immunohistochemistry was performed to assess functional and morphological changes to the retina as a result of GW4869-induced exosome depletion.ResultsResults demonstrated an inverse correlation between s-mEV secretion and photoreceptor survivability, with a decrease in s-mEV numbers following degeneration. Small RNAseq revealed that s-mEVs contained uniquely enriched miRNAs in comparison to in whole retinal tissue however, there was no differential change in the s-mEV miRNAnome following photo-oxidative damage. Exosome inhibition via the use of GW4869 was also found to exacerbate retinal degeneration, with reduced retinal function and increased levels of inflammation and cell death demonstrated following photo-oxidative damage in exosome-inhibited mice. Further, GW4869-treated mice displayed impaired translocation of photoreceptor-derived miR-124-3p to the inner retina during damage.ConclusionsTaken together, we propose that retinal s-mEV and their miRNA cargo play an essential role in maintaining retinal homeostasis through immune-modulation, and have the potential to be used in targeted gene therapy for retinal degenerative diseases.


2020 ◽  
Vol 48 (3) ◽  
pp. 137-152
Author(s):  
Marko Manevski ◽  
Dinesh Devadoss ◽  
Ruben Castro ◽  
Lauren Delatorre ◽  
Adriana Yndart ◽  
...  

2000 ◽  
Vol 20 (9) ◽  
pp. 3125-3136 ◽  
Author(s):  
Atan Gross ◽  
Kirsten Pilcher ◽  
Elizabeth Blachly-Dyson ◽  
Emy Basso ◽  
Jennifer Jockel ◽  
...  

ABSTRACT The BCL-2 family includes both proapoptotic (e.g., BAX and BAK) and antiapoptotic (e.g., BCL-2 and BCL-XL) molecules. The cell death-regulating activity of BCL-2 members appears to depend on their ability to modulate mitochondrial function, which may include regulation of the mitochondrial permeability transition pore (PTP). We examined the function of BAX and BCL-XL using genetic and biochemical approaches in budding yeast because studies with yeast suggest that BCL-2 family members act upon highly conserved mitochondrial components. In this study we found that in wild-type yeast, BAX induced hyperpolarization of mitochondria, production of reactive oxygen species, growth arrest, and cell death; however, cytochrome c was not released detectably despite the induction of mitochondrial dysfunction. Coexpression of BCL-XL prevented all BAX-mediated responses. We also assessed the function of BCL-XL and BAX in the same strain of Saccharomyces cerevisiae with deletions of selected mitochondrial proteins that have been implicated in the function of BCL-2 family members. BAX-induced growth arrest was independent of the tested mitochondrial components, including voltage-dependent anion channel (VDAC), the catalytic β subunit or the δ subunit of the F0F1-ATP synthase, mitochondrial cyclophilin, cytochrome c, and proteins encoded by the mitochondrial genome as revealed by [rho 0] cells. In contrast, actual cell killing was dependent upon select mitochondrial components including the β subunit of ATP synthase and mitochondrial genome-encoded proteins but not VDAC. The BCL-XL protection from either BAX-induced growth arrest or cell killing proved to be independent of mitochondrial components. Thus, BAX induces two cellular processes in yeast which can each be abrogated by BCL-XL: cell arrest, which does not require aspects of mitochondrial biochemistry, and cell killing, which does.


2002 ◽  
Vol 22 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Yoshihide Tsujimoto

An increase in the permeability of outer mitochondrial membrane is central to apoptotic cell death, and results in the release of several apoptogenic factors such as cytochrome c into the cytoplasm to activate downstream destructive programs. The voltage-dependent anion channel (VDAC or mitochondrial porin) plays an essential role in disrupting the mitochondrial membrane barrier and is regulated directly by members of the Bcl-2 family proteins. Anti-apoptotic Bcl-2 family members interact with and close the VDAC, whereas some, but not all, proapoptotic members interact with VDAC to open protein-conducting pore through which apoptogenic factors pass. Although the VDAC is involved directly in breaking the mitochondrial membrane barrier and is a known component of the permeability transition pore complex, VDAC-dependent increase in outer membrane permeability can be independent of the permeability transition event such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. VDAC interacts not only with Bcl-2 family members but also with proteins such as gelsolin, an actin regulatory protein, and appears to be a convergence point for a variety of cell survival and cell death signals.


Sign in / Sign up

Export Citation Format

Share Document