scholarly journals Biochemical and Genetic Analysis of the Mitochondrial Response of Yeast to BAX and BCL-XL

2000 ◽  
Vol 20 (9) ◽  
pp. 3125-3136 ◽  
Author(s):  
Atan Gross ◽  
Kirsten Pilcher ◽  
Elizabeth Blachly-Dyson ◽  
Emy Basso ◽  
Jennifer Jockel ◽  
...  

ABSTRACT The BCL-2 family includes both proapoptotic (e.g., BAX and BAK) and antiapoptotic (e.g., BCL-2 and BCL-XL) molecules. The cell death-regulating activity of BCL-2 members appears to depend on their ability to modulate mitochondrial function, which may include regulation of the mitochondrial permeability transition pore (PTP). We examined the function of BAX and BCL-XL using genetic and biochemical approaches in budding yeast because studies with yeast suggest that BCL-2 family members act upon highly conserved mitochondrial components. In this study we found that in wild-type yeast, BAX induced hyperpolarization of mitochondria, production of reactive oxygen species, growth arrest, and cell death; however, cytochrome c was not released detectably despite the induction of mitochondrial dysfunction. Coexpression of BCL-XL prevented all BAX-mediated responses. We also assessed the function of BCL-XL and BAX in the same strain of Saccharomyces cerevisiae with deletions of selected mitochondrial proteins that have been implicated in the function of BCL-2 family members. BAX-induced growth arrest was independent of the tested mitochondrial components, including voltage-dependent anion channel (VDAC), the catalytic β subunit or the δ subunit of the F0F1-ATP synthase, mitochondrial cyclophilin, cytochrome c, and proteins encoded by the mitochondrial genome as revealed by [rho 0] cells. In contrast, actual cell killing was dependent upon select mitochondrial components including the β subunit of ATP synthase and mitochondrial genome-encoded proteins but not VDAC. The BCL-XL protection from either BAX-induced growth arrest or cell killing proved to be independent of mitochondrial components. Thus, BAX induces two cellular processes in yeast which can each be abrogated by BCL-XL: cell arrest, which does not require aspects of mitochondrial biochemistry, and cell killing, which does.

2002 ◽  
Vol 22 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Yoshihide Tsujimoto

An increase in the permeability of outer mitochondrial membrane is central to apoptotic cell death, and results in the release of several apoptogenic factors such as cytochrome c into the cytoplasm to activate downstream destructive programs. The voltage-dependent anion channel (VDAC or mitochondrial porin) plays an essential role in disrupting the mitochondrial membrane barrier and is regulated directly by members of the Bcl-2 family proteins. Anti-apoptotic Bcl-2 family members interact with and close the VDAC, whereas some, but not all, proapoptotic members interact with VDAC to open protein-conducting pore through which apoptogenic factors pass. Although the VDAC is involved directly in breaking the mitochondrial membrane barrier and is a known component of the permeability transition pore complex, VDAC-dependent increase in outer membrane permeability can be independent of the permeability transition event such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. VDAC interacts not only with Bcl-2 family members but also with proteins such as gelsolin, an actin regulatory protein, and appears to be a convergence point for a variety of cell survival and cell death signals.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Judith Michels ◽  
Oliver Kepp ◽  
Laura Senovilla ◽  
Delphine Lissa ◽  
Maria Castedo ◽  
...  

The BCL-2 homolog BCL-XL, one of the two protein products ofBCL2L1, has originally been characterized for its prominent prosurvival functions. Similar to BCL-2, BCL-XLbinds to its multidomain proapoptotic counterparts BAX and BAK, hence preventing the formation of lethal pores in the mitochondrial outer membrane, as well as to multiple BH3-only proteins, thus interrupting apical proapoptotic signals. In addition, BCL-XLhas been suggested to exert cytoprotective functions by sequestering a cytosolic pool of the pro-apoptotic transcription factor p53 and by binding to the voltage-dependent anion channel 1 (VDAC1), thereby inhibiting the so-called mitochondrial permeability transition (MPT). Thus, BCL-XLappears to play a prominent role in the regulation of multiple distinct types of cell death, including apoptosis and regulated necrosis. More recently, great attention has been given to the cell death-unrelated functions of BCL-2-like proteins. In particular, BCL-XLhas been shown to modulate a number of pathophysiological processes, including—but not limited to—mitochondrial ATP synthesis, protein acetylation, autophagy and mitosis. In this short review article, we will discuss the functions of BCL-XLat the interface between cell death and metabolism.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea Urbani ◽  
Valentina Giorgio ◽  
Andrea Carrer ◽  
Cinzia Franchin ◽  
Giorgio Arrigoni ◽  
...  

Abstract The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device.


PLoS ONE ◽  
2007 ◽  
Vol 2 (11) ◽  
pp. e1170 ◽  
Author(s):  
Tanay Ghosh ◽  
Neeraj Pandey ◽  
Arindam Maitra ◽  
Samir K. Brahmachari ◽  
Beena Pillai

2005 ◽  
Vol 289 (4) ◽  
pp. C994-C1001 ◽  
Author(s):  
Peter J. Adhihetty ◽  
Vladimir Ljubicic ◽  
Keir J. Menzies ◽  
David A. Hood

Apoptosis can be evoked by reactive oxygen species (ROS)-induced mitochondrial release of the proapoptotic factors cytochrome c and apoptosis-inducing factor (AIF). Because skeletal muscle is composed of two mitochondrial subfractions that reside in distinct subcellular regions, we investigated the apoptotic susceptibility of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS and IMF mitochondria exhibited a dose-dependent release of protein in response to H2O2 (0, 25, 50, and 100 μM). However, IMF mitochondria were more sensitive to H2O2 and released a 2.5-fold and 10-fold greater amount of cytochrome c and AIF, respectively, compared with SS mitochondria. This finding coincided with a 44% ( P < 0.05) greater rate of opening (maximum rate of absorbance decrease, Vmax) of the protein release channel, the mitochondrial permeability transition pore (mtPTP), in IMF mitochondria. IMF mitochondria also exhibited a 47% ( P < 0.05) and 60% (0.05 < P < 0.1) greater expression of the key mtPTP component voltage-dependent anion channel and cyclophilin D, respectively, along with a threefold greater cytochrome c content, but similar levels of AIF compared with SS mitochondria. Despite a lower susceptibility to H2O2-induced release, SS mitochondria possessed a 10-fold greater Bax-to-Bcl-2 ratio ( P < 0.05), a 2.7-fold greater rate of ROS production, and an approximately twofold greater membrane potential compared with IMF mitochondria. The expression of the antioxidant enzyme Mn2+-superoxide dismutase was similar between subfractions. Thus the divergent protein composition and function of the mtPTP between SS and IMF mitochondria contributes to a differential release of cytochrome c and AIF in response to ROS. Given the relatively high proportion of IMF mitochondria within a muscle fiber, this subfraction is likely most important in inducing apoptosis when presented with apoptotic stimuli, ultimately leading to myonuclear decay and muscle fiber atrophy.


2013 ◽  
Vol 33 (16) ◽  
pp. 3137-3149 ◽  
Author(s):  
Kai Guan ◽  
Zirui Zheng ◽  
Ting Song ◽  
Xiang He ◽  
Changzhi Xu ◽  
...  

The mitochondrial antiviral signaling protein MAVS (IPS-1, VISA, or Cardif) plays an important role in the host defense against viral infection by inducing type I interferon. Recent reports have shown that MAVS is also critical for virus-induced apoptosis. However, the mechanism of MAVS-mediated apoptosis induction remains unclear. Here, we show that MAVS binds to voltage-dependent anion channel 1 (VDAC1) and induces apoptosis by caspase-3 activation, which is independent of its role in innate immunity. MAVS modulates VDAC1 protein stability by decreasing its degradative K48-linked ubiquitination. In addition, MAVS knockout mouse embryonic fibroblasts (MEFs) display reduced VDAC1 expression with a consequent reduction of the vesicular stomatitis virus (VSV)-induced apoptosis response. Notably, the upregulation of VDAC1 triggered by VSV infection is completely abolished in MAVS knockout MEFs. We thus identify VDAC1 as a target of MAVS and describe a novel mechanism of MAVS control of virus-induced apoptotic cell death.


1999 ◽  
Vol 66 ◽  
pp. 167-179 ◽  
Author(s):  
Martin Crompton ◽  
Sukaina Virji ◽  
Veronica Doyle ◽  
Nicholas Johnson ◽  
John M. Ward

This chapter reviews recent advances in the identification of the structural elements of the permeability transition pore. The discovery that cyclosporin A (CsA) inhibits the pore proved instrumental. Various approaches indicate that CsA blocks the pore by binding to cyclophilin (CyP)-D. In particular, covalent labelling of CyP-D in situ by a photoactive CsA derivative has shown that pore ligands have the same effects on the degree to which CsA both blocks the pore and binds to CyP-D. The recognition that CyP-D is a key component has enabled the other constituents to be resolved. Use of a CyP-D fusion protein as affinity matrix has revealed that CyP-D binds very strongly to 1:1 complexes of the voltage-dependent anion channel (from the outer membrane) and adenine nucleotide translocase (inner membrane). Our current model envisages that the pore arises as a complex between these three components at contact sites between the mitochondrial inner and outer membranes. This is in line with recent reconstitutions of pore activity from protein fractions containing these proteins. The strength of interaction between these proteins suggests that it may be a permanent feature rather than assembled only under pathological conditions. Calcium, the key activator of the pore, does not appear to affect pore assembly; rather, an allosteric action allowing pore flicker into an open state is indicated. CsA inhibits pore flicker and lowers the binding affinity for calcium. Whether adenine nucleotide translocase or the voltage-dependent anion channel (via inner membrane insertion) provides the inner membrane pore has not been settled, and data relevant to this issue are also documented.


Sign in / Sign up

Export Citation Format

Share Document