scholarly journals The Use of Induced Pluripotent Stem Cells to Study the Effects of Adenosine Deaminase Deficiency on Human Neutrophil Development

2021 ◽  
Vol 12 ◽  
Author(s):  
Michael Tsui ◽  
Weixian Min ◽  
Stephanie Ng ◽  
Kerry Dobbs ◽  
Luigi D. Notarangelo ◽  
...  

Inherited defects that abrogate the function of the adenosine deaminase (ADA) enzyme and consequently lead to the accumulation of toxic purine metabolites cause profound lymphopenia and severe combined immune deficiency. Additionally, neutropenia and impaired neutrophil function have been reported among ADA-deficient patients. However, due to the rarity of the disorder, the neutrophil developmental abnormalities and the mechanisms contributing to them have not been characterized. Induced pluripotent stem cells (iPSC) generated from two unrelated ADA-deficient patients and from healthy controls were differentiated through embryoid bodies into neutrophils. ADA deficiency led to a significant reduction in the number of all early multipotent hematopoietic progenitors. At later stages of differentiation, ADA deficiency impeded the formation of granulocyte colonies in methylcellulose cultures, leading to a significant decrease in the number of neutrophils generated from ADA-deficient iPSCs. The viability and apoptosis of ADA-deficient neutrophils isolated from methylcellulose cultures were unaffected, suggesting that the abnormal purine homeostasis in this condition interferes with differentiation or proliferation. Additionally, there was a significant increase in the percentage of hyperlobular ADA-deficient neutrophils, and these neutrophils demonstrated significantly reduced ability to phagocytize fluorescent microspheres. Supplementing iPSCs and methylcellulose cultures with exogenous ADA, which can correct adenosine metabolism, reversed all abnormalities, cementing the critical role of ADA in neutrophil development. Moreover, chemical inhibition of the ribonucleotide reductase (RNR) enzyme, using hydroxyurea or a combination of nicotinamide and trichostatin A in iPSCs from healthy controls, led to abnormal neutrophil differentiation similar to that observed in ADA deficiency, implicating RNR inhibition as a potential mechanism for the neutrophil abnormalities. In conclusion, the findings presented here demonstrate the important role of ADA in the development and function of neutrophils while clarifying the mechanisms responsible for the neutrophil abnormalities in ADA-deficient patients.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


2013 ◽  
Vol 25 (1) ◽  
pp. 301
Author(s):  
A. R. Fan ◽  
K. Y. Ma ◽  
T. C. Zhao ◽  
P. P. An ◽  
B. Tang ◽  
...  

It was recently found that the ten-eleven-translocation (TET) family of Fe(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and thus promotes active demethylation of genomes. Tet1 is highly expressed in mouse embryonic stem cells (mESC) and has been demonstrated to involve in mESC maintenance. Here we used small interference RNA (siRNA) to transiently knockdown expression of Tet1 in porcine induced pluripotent stem cells (iPSC) in order to identify its functions. The fetal fibroblasts were isolated from a 30-day-old porcine fetus and induced into iPSC with defined transcription factors, namely Oct-4, Sox-2, Klf-4, and C-myc. The colonies appeared on Day 12 and were picked up on Day 14. These colonies had normal ES-like morphology and alkaline phosphatase activity. Specifically, they were positively stained for pluripotency-specific markers, including Oct4, Sox2, Nanog, Rex1, and SSEA1. When cultured in vitro, the cells formed embryoid bodies (EB), and all 3 germ layer markers (endoderm: AFP, alphaAT; mesoderm: BMP4, Enolase; ectoderm: GFAP, Neurod) were detected positively in EB. For siRNA transfections, iPSC from the colonies were transfected with 40 pmol of siRNA and 2 µL of Lipofectamine 2000 in 1 well of a 24-well plate. After transfection, iPSC were subjected to fluorescence-activated cell sorting to determine the fraction of FAM-positive cells in order to confirm transfection efficiency; the percentage of positive cells reached 48 ± 4.96. We observed obvious knockdown of Tet1 after short-term transfection of siRNA, and the knockdown efficiency was confirmed using qRT-PCR and immunofluorescence staining. Notably, knockdown of Tet1 resulted in morphological abnormality and loss of undifferentiated state of porcine iPSC. However, no obvious morphological changes were observed in the negative control (transfected with nonsense-siRNA), positive control (transfected with GAPDH-siRNA), or mock control (transfected with DEPC-treated water). To gain insight into the molecular mechanism underlying the self-renewal defect, we analysed the effects of Tet1 knockdown on the expression of key stem cell factors and differentiation markers of different embryonic layers using qRT-PCR. We found that knockdown of Tet1 resulted in downregulated expression of pluripotency-related genes, such as Lefty-2, Klf-2, and Sox-2 (the expression ratios of post-transfection to pre-transfection were 0.31 ± 0.21, 0.48 ± 0.072, and 0.65 ± 0.046, respectively), and upregulated expression of differentiation-related genes, including Pitx-2, Hand-1, Gata-6, and Lef-1 (the expression ratios of post-transfection to pre-transfection were 4.35 ± 1.36, 2.56 ± 0.68, 2.91 ± 1.47, and 2.33 ± 1.11, respectively). However, Oct-4, C-myc, Klf-4, and Nanog were not downregulated (the expression ratios of post-transfection to pre-transfection were 0.91 ± 0.15, 1.12 ± 0.26, 1.15 ± 0.21, and 1.08 ± 0.08, respectively). Taken together, Tet1 plays important roles in porcine iPSC self-renewal and characterization maintenance. This study was financed by National Basic Research Program of China (NO.2009CB941001).


Sign in / Sign up

Export Citation Format

Share Document