scholarly journals Thymic Function and T-Cell Receptor Repertoire Diversity: Implications for Patient Response to Checkpoint Blockade Immunotherapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Antonella Cardinale ◽  
Carmen Dolores De Luca ◽  
Franco Locatelli ◽  
Enrico Velardi

The capacity of T cells to recognize and mount an immune response against tumor antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in the thymus during the process of T-cell development. However, this process is dramatically impaired by immunological insults, such as that caused by cytoreductive cancer therapies and infections, and by the physiological decline of thymic function with age. Defective thymic function and a skewed TCR repertoire can have significant clinical consequences. The presence of an adequate pool of T cells capable of recognizing specific tumor antigens is a prerequisite for the success of cancer immunotherapy using checkpoint blockade therapy. However, while this approach has improved the chances of survival of patients with different types of cancer, a large proportion of them do not respond. The limited response rate to checkpoint blockade therapy may be linked to a suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR repertoire influences patients’ response to checkpoint blockade therapy and highlight approaches able to manipulate thymic function to enhance anti-tumor immunity.

1995 ◽  
Vol 181 (5) ◽  
pp. 1863-1868 ◽  
Author(s):  
A Bender ◽  
N Ernst ◽  
A Iglesias ◽  
K Dornmair ◽  
H Wekerle ◽  
...  

In polymyositis (PM), CD8+ T cell receptor (TCR) alpha/beta + cells invade and destroy major histocompatibility complex class I-positive muscle fibers. We combined polymerase chain reaction (PCR) and double-fluorescence immunocytochemistry to analyze the T cell receptor (TCR) repertoire expressed in muscle of PM patients. In patient 1, inverse PCR revealed a preferential usage of TCR V alpha 33.1, V beta 13.1, and V beta 5.1. Six of six TCR V alpha 33.1+ clones and five of seven V beta 13.1+ clones had identical nucleotide sequences. In contrast, the V beta 5.1+ TCRs were more heterogeneous. Similar results were obtained with an independent PCR method using primers specific for TCR V alpha 33, V beta 13, or V beta 5. No TCR sequences could be amplified from noninflammatory control muscle. Furthermore, none of the TCR sequences found in PM muscle could be detected in blood from the same patient or from a normal control subject. Immunohistochemistry confirmed that V beta 5.1 and V beta 13.1 were overrepresented in the muscle lesions of this patient. 32% of all CD8+ T cells were V beta 13.1+, and 16% were V beta 5.1+. However, approximately 60% of the CD8+ T cells that invaded muscle fibers were V beta 13.1+, whereas 10% were V beta 5.1+. In patient 2, 50% of the T cells were V beta 5.1+, and as in patient 1, these T cells were mainly located in interstitial areas. In patient 3, > 75% of the autoinvasive T cells stained with an anti-V beta 3 mAb. Sequence analysis of 15 PCR clones amplified with a V beta 3-specific primer showed that 9 (60%) sequences were identical. The results suggest that (a) a strikingly limited TCR repertoire is expressed in PM muscle; (b) there is a dissociation between the TCR usage of autoinvasive and interstitial T cells; and (c) the autoinvasive T cells are clonally expanded.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S176-S177
Author(s):  
A Gamliel ◽  
L Werner ◽  
N Salamon ◽  
M Pinsker ◽  
B Weiss ◽  
...  

Abstract Background Memory T cells play an important role in mediating inflammatory responses in IBD. The integrin a4b7 is highly expressed on activated T cells, and is thought to direct homing of lymphocytes to the intestine, following its binding to MADCAM-1 expressed exclusively on intestinal endothelial cells. Since UC is characterised by oligoclonal expansion of specific T-cell clonotypes, we hypothesised that circulating memory T cells with gut-homing potential would exhibit unique T-cell receptor repertoire features. Methods Peripheral blood mononuclear cells were collected from 5 control subjects and 6 pediatric patients with active UC. Following CD3 MACS sorting cells were FACS sorted into a4b7 positive and a4b7 negative CD3+CD45RO+ memory T cells. DNA was Isolated from each subset and subjected to next-generation sequencing of the TCRB. This high-throughput platform employs massive parallel sequencing to process millions of rearranged T-cell receptor (TCR) products simultaneously, and permits an in-depth analysis of individual TCRs at the nucleotide level. Comparisons of different indices of diversity, CDR3 length and clonal biochemical characteristics were performed between a4b7 positive and a4b7 negative populations for each subject, and between controls and UC patients. Results PBMCs were isolated from active UC patients during endoscopic assessment. Four patients had a Mayo endoscopic score of 2, and two patients had a score of 1. Only one patient was treated with an immunosuppressive medication (azathioprine), and five out of six patients were treated with 5ASAs. Percentages of memory T cells (43.8 ± 12.3% vs. 32.2 ± 13.1%, p = 0.17) and a4b7 positive T cells (33.6 ± 15.7% vs. 36.0 ± 17.6%, p = 0.81) were comparable between controls and UC patients. Interestingly, a4b7 positive memory T cells displayed a polyclonal distribution, in both control subjects and in UC patients, without expansion of specific clones. Different indices of diversity, including shanon’s H, clonality index and entropy, were similar among controls and patients, both for a4b7 positive and a4b7 negative populations. Finally, clonal overlap between a4b7 positive and a4b7 negative memory T cells, for each subject was high, ranging between 30–50% for controls and 27–48% for UC patients. Conclusion a4b7 expressing memory T cells exhibited a polyclonal repertoire in both control subjects and patients with active UC, with high rates of overlap with a4b7 negative memory T cells. Our study, along with additional recent reports, challenge the dogma of the importance of a4b7 expression for T-cell migration to the gut, and may suggest that vedolizumab’s suppresses intestinal inflammation by blocking the trafficking of innate immune subsets.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 886-893 ◽  
Author(s):  
Xiaohua Chen ◽  
Raymond Barfield ◽  
Ely Benaim ◽  
Wing Leung ◽  
James Knowles ◽  
...  

Abstract The extent and rapidity with which T cells are regenerated from graft-derived precursor cells directly influences the incidence of infection and the T-cell–based graft-versus-tumor effect. Measurement of T-cell receptor excision circles (TRECs) in peripheral blood is a means of quantifying recent thymic T-cell production and has been used after transplantation in many studies to estimate thymus-dependent T-cell reconstitution. We hypothesized that the quality of thymic function before transplantation affects thymus-dependent T-cell reconstitution after transplantation. We used real-time polymerase chain reaction (PCR) to quantify signal-joint TRECs (sjTRECs) before and after transplantation. T-cell reconstitution was evaluated by T-cell receptor β (TCRβ) CDR3 size spectratyping. We tested 77 healthy sibling donors and 244 samples from 26 pediatric recipients of allogeneic hematopoietic stem cell transplantation (AHSCT). Blood from the healthy donors contained 1200 to 155 000 sjTREC copies/mL blood. Patients who had greater than 1200 copies/mL blood before transplantation showed early recovery of sjTREC numbers and TCRβ repertoire diversity. In contrast, patients who had fewer than 1200 copies/mL blood before transplantation demonstrated significantly slower restoration of thymus-dependent T cells. We conclude that the rate of reconstitution of thymus-dependent T cells is dependent on the competence of thymic function in the recipients before transplantation. Therefore, pretransplantation measurement of sjTREC may provide an important tool for predicting thymus-dependent T-cell reconstitution after transplantation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1451-1451
Author(s):  
Chao Wang ◽  
Qiang Gong ◽  
Weiwei Zhang ◽  
Javeed Iqbal ◽  
Yang Hu ◽  
...  

Abstract Introduction: Diversity of the T-cell receptor (TCR) repertoire reflects the initial V(D)J recombination events as shaped by selection by self and foreign antigens. Next generation sequencing is a powerful method for profiling the TCR repertoire, including sequences encoding complementarity-determining region 3 (CDR3). Peripheral T-cell lymphoma (PTCL) is a group of malignancies that originate from mature T-cells. T-cell clonality of PTCL is routinely evaluated with a PCR-based method to detect TCR gamma and less frequently beta chain rearrangements using genomic DNA. However, there are limitations with this approach, chief among which is the lack of sequence information. To date, the TCR repertoire of different subtypes of PTCL remains poorly defined. Objective: The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and analyzing the TCR usage in PTCL samples. Methods: We analyzed RNA-seq data from 30 angioimmunoblastic T-cell lymphoma (AITL), 23 Anaplastic large cell lymphoma (ALCL), 10 PTCL-NOS, and 17 NKCL. Data from naïve T cells, TFH cells, and T-effector cells (CD4+ CD45RA− TCRβ+ PD-1lo CXCR5lo PSGL-1hi) were obtained from publicly available resources. Referenced TCR and immunoglobulin transcripts according to the International ImMunoGeneTics Information System (IMGT) database were quantified by Kallisto software. We divided the pattern of Vβ (T-cell receptor beta variable region) into three categories: monoclonal (mono- or bi-allelic), oligoclonal (3-4 dominant clones), and polyclonal. CDR3 sequences were extracted by MiXCR program. PCR of the gamma chain using genomic DNA was utilized to validate the clonality of selected cases. Single nucleotide variants (SNVs) were called from aligned RNA-seq data using Samtools and VarScan 2 programs. Results: Analysis of RNA-seq data identified preferential usage of TCR-Vβ, Dβ (diversity region), and Jβ (joining region), length diversity of CDR3, and usage of nontemplated bases. Dominant clones could be identified by transcriptome sequencing in most cases of AITL (21/30), ALCL (14/23), and PTCL-NOS (7/10). Median CDR3 length is 42 nucleotides (nt) in normal T cells, 41 nt in ALCL, 48 nt in PTCL-NOS, and 44 nt in AITL. In 30 AITL samples, 20 showed monoclonal Vβ with a single peak, and 9 showed polyclonal Vβ. One case had two dominant clones with different CDR3, only one of which was in frame, implying biallelic rearrangements. As many as 3511 clones supported by at least four reads could be detected in polyclonal cases. In monoclonal cases, the dominant clone varied between 11.8% and 92.8% of TCR with Vβ rearrangements. TRBV 20-1, which is the most commonly used segment in normal T cells, is also frequently used in the dominant clones in AITL. The monoclonal AITL cases showed mutation of TET2, RHOA, DNMT3A or IDH2 whereas most of the polyclonal cases were negative or had low VAF mutation suggesting low or absent of tumor infiltrate in the specimen sequenced. There is no obvious correlation of any of the mutations with Vβ usage. Clonal B cell expansion was noted in some AITL samples. The occurrence of a preferential TRBV9 expansion in PTCL-NOS was striking. More than half of ALCL samples (14/23) showed expression of clonal Vβ, but 3/14 dominant clones were out-of-frame. γ chain expression was very low in cells expressing TCRαβ, but both expression levels and clonality were higher in TCRγδ expressing tumors. NKCL did not express significant levels of TCR Vβ or Vγ genes. Discussion/Interpretation: Transcriptome sequencing is a useful tool for understanding the TCR repertoire in T cell lymphoma and for detecting clonality for diagnosis. Clonal, often out-of-frame, Vβ transcripts are detectable in most ALCL cases and preferential TRBV9 usage is found in PTCL-NOS. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 118 (2-3) ◽  
pp. 243-249 ◽  
Author(s):  
Sunil Kumar Chauhan ◽  
Naresh Kumar Tripathy ◽  
Nakul Sinha ◽  
Soniya Nityanand

1989 ◽  
Vol 19 (11) ◽  
pp. 2175-2177 ◽  
Author(s):  
Eric J. Jenkinson ◽  
Rosetta Kingston ◽  
Christopher A. Smith ◽  
Gwynn T. Williams ◽  
John J. T. Owen

2008 ◽  
Vol 43 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Andrea Rossmann ◽  
Blair Henderson ◽  
Bettina Heidecker ◽  
Ruediger Seiler ◽  
Gustav Fraedrich ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (5) ◽  
pp. 1915-1918 ◽  
Author(s):  
Matthias Eyrich ◽  
Tanja Croner ◽  
Christine Leiler ◽  
Peter Lang ◽  
Peter Bader ◽  
...  

Normalization of restricted T-cell–receptor (TCR) repertoire is critical following T-cell–depleted (TCD) stem cell transplantation. We present a prospective study analyzing respective contributions of naive and memory T-cell subsets within the CD4+ and CD8+ compartments to the evolution of overall TCR-repertoire complexity following transplantation of CD34-selected peripheral blood progenitor cells from unrelated donors. During the first year after transplantation, sorted CD4/45RA, CD4/45R0, CD8/45RA, and CD8/45R0 subsets were analyzed at 3-month intervals for TCR-repertoire complexity by CDR3 size spectratyping. Skew in TCR-repertoire was observed only in early memory-type T cells. CD4+ and CD8+ subsets differed in clonal distribution of CDR3 sizes, with rapid Gaussian normalization of bands in CD4/45R0+ T cells. Naive T cells displayed normal repertoire complexity and contributed significantly to skew correction. Our data provide direct evidence for an important role of de novo maturation of naive T cells in normalization of an initially restricted TCR-repertoire following transplantation of CD34-selected, TCD-depleted peripheral blood progenitors from unrelated donors.


Sign in / Sign up

Export Citation Format

Share Document