scholarly journals Using Forecasting Methods to Incorporate Social, Economic, and Political Considerations Into Marine Protected Area Planning

2021 ◽  
Vol 8 ◽  
Author(s):  
Seth T. Sykora-Bodie ◽  
Jorge G. Álvarez-Romero ◽  
Javier A. Arata ◽  
Alistair Dunn ◽  
Jefferson T. Hinke ◽  
...  

As the global environmental crisis grows in scale and complexity, conservation professionals and policymakers are increasingly called upon to make decisions despite high levels of uncertainty, limited resources, and insufficient data. Global efforts to protect biodiversity in areas beyond national jurisdiction require substantial international cooperation and negotiation, both of which are characterized by unpredictability and high levels of uncertainty. Here we build on recent studies to adapt forecasting techniques from the fields of hazard prediction, risk assessment, and intelligence analysis to forecast the likelihood of marine protected area (MPA) designation in the Southern Ocean. We used two questionnaires, feedback, and a discussion round in a Delphi-style format expert elicitation to obtain forecasts, and collected data on specific biophysical, socioeconomic, geopolitical, and scientific factors to assess how they shape and influence these forecasts. We found that areas further north along the Western Antarctic Peninsula were considered to be less likely to be designated than areas further south, and that geopolitical factors, such as global politics or events, and socioeconomic factors, such as the presence of fisheries, were the key determinants of whether an area was predicted to be more or less likely to be designated as an MPA. Forecasting techniques can be used to inform protected area design, negotiation, and implementation in highly politicized situations where data is lacking by aiding with spatial prioritization, targeting scarce resources, and predicting the success of various spatial arrangements, interventions, or courses of action.

2021 ◽  
Vol 9 (1) ◽  
pp. 84-107
Author(s):  
Karen N. Scott

Abstract In 2016, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) designated the largest marine protected area (MPA) in the Ross Sea. Hailed as both a precedent and a prototype for MPAs in both Antarctica and in areas beyond national jurisdiction more generally, it is nevertheless proving challenging to implement. Moreover, further MPAs have yet to be designated in the region although a number are under negotiation. This article will evaluate the contribution made by CCAMLR to the implementation of SDG 14.5 (the conservation of at least 20 per cent of marine and coastal areas by 2020), its relationship to area-based protection under the 1991 Environmental Protocol, and highlight the challenges of establishing MPAs beyond the jurisdiction of states.


2014 ◽  
Vol 506 ◽  
pp. 175-192 ◽  
Author(s):  
N Sturaro ◽  
G Lepoint ◽  
A Pérez-Perera ◽  
S Vermeulen ◽  
P Panzalis ◽  
...  

2019 ◽  
Vol 609 ◽  
pp. 239-256 ◽  
Author(s):  
TL Silva ◽  
G Fay ◽  
TA Mooney ◽  
J Robbins ◽  
MT Weinrich ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Kirin Apps ◽  
Kay Dimmock ◽  
David J. Lloyd ◽  
Charlie Huveneers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmood Sadat-Noori ◽  
Caleb Rankin ◽  
Duncan Rayner ◽  
Valentin Heimhuber ◽  
Troy Gaston ◽  
...  

AbstractClimate change driven Sea Level Rise (SLR) is creating a major global environmental crisis in coastal ecosystems, however, limited practical solutions are provided to prevent or mitigate the impacts. Here, we propose a novel eco-engineering solution to protect highly valued vegetated intertidal ecosystems. The new ‘Tidal Replicate Method’ involves the creation of a synthetic tidal regime that mimics the desired hydroperiod for intertidal wetlands. This synthetic tidal regime can then be applied via automated tidal control systems, “SmartGates”, at suitable locations. As a proof of concept study, this method was applied at an intertidal wetland with the aim of restabilising saltmarsh vegetation at a location representative of SLR. Results from aerial drone surveys and on-ground vegetation sampling indicated that the Tidal Replicate Method effectively established saltmarsh onsite over a 3-year period of post-restoration, showing the method is able to protect endangered intertidal ecosystems from submersion. If applied globally, this method can protect high value coastal wetlands with similar environmental settings, including over 1,184,000 ha of Ramsar coastal wetlands. This equates to a saving of US$230 billion in ecosystem services per year. This solution can play an important role in the global effort to conserve coastal wetlands under accelerating SLR.


2021 ◽  
pp. 101852
Author(s):  
Miguel Armenta-Cisneros ◽  
Miguel Angel Ojeda-Ruiz ◽  
Elvia Aida Marín-Monroy ◽  
Alfredo Flores-Irigoyen

2004 ◽  
pp. 73-92
Author(s):  
Jean Worms ◽  
Mathieu Ducrocq ◽  
Abdelkader Ould Mohammed Saleck

Sign in / Sign up

Export Citation Format

Share Document