scholarly journals Reproduction and Sexual Maturity of European Sardine (Sardina pilchardus) in the Central Mediterranean Sea

2021 ◽  
Vol 8 ◽  
Author(s):  
Gualtiero Basilone ◽  
Rosalia Ferreri ◽  
Salvatore Aronica ◽  
Salvatore Mazzola ◽  
Angelo Bonanno ◽  
...  

Understanding drivers of fish maturity is essential to predict the productivity, stability, and resiliency of exploited populations. Size at maturity for European sardine (Sardina pilchardus) in the Central Mediterranean Sea has never been published within rigorous peer review process. In the past, stock assessment working groups in the Mediterranean requested such information; however, the size at which 50% of the fish population reaches the sexual maturity (L50) often received weak estimates based on a single or few years of observation, which do not necessarily reflect the whole stock. To address this data gap for the Central Mediterranean Sea, the present research estimated size at maturity of European sardine in the Strait of Sicily. In the study period (2009–2017), sampled individuals exhibited significant differences in size range as well as in body condition and reproductive effort. Data also permitted a clear identification of the spawning season, starting in September–October and ending in March–April the following year. Along the analyzed period, the size at first maturity ranged from 108 to 124 mm (total length) for females and from 102 to 122 mm for males. Significant differences were recorded among genders and years. Moreover, a goodness-of-fit measure was proposed to assess the robustness and reliability of L50 estimates, and thus selecting those that minimize the fitting-associated errors. Finally, results suggested that the low proportion of immature individuals in the samples represents the main source of bias in L50 estimation and possible solution was also proposed.

2013 ◽  
Vol 10 (4) ◽  
pp. 416-425 ◽  
Author(s):  
Hasna Kadri ◽  
Sondes Marouani ◽  
Bechir Saïdi ◽  
Mohamed Nejmeddine Bradai ◽  
Abderrahmen Bouaïn ◽  
...  

Hydrobiologia ◽  
2017 ◽  
Vol 821 (1) ◽  
pp. 153-172 ◽  
Author(s):  
G. Garofalo ◽  
S. Fezzani ◽  
F. Gargano ◽  
G. Milisenda ◽  
O. Ben Abdallah ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2188
Author(s):  
Salvatore Marullo ◽  
Jaime Pitarch ◽  
Marco Bellacicco ◽  
Alcide Giorgio di Sarra ◽  
Daniela Meloni ◽  
...  

Air–sea heat fluxes are essential climate variables, required for understanding air–sea interactions, local, regional and global climate, the hydrological cycle and atmospheric and oceanic circulation. In situ measurements of fluxes over the ocean are sparse and model reanalysis and satellite data can provide estimates at different scales. The accuracy of such estimates is therefore essential to obtain a reliable description of the occurring phenomena and changes. In this work, air–sea radiative fluxes derived from the SEVIRI sensor onboard the MSG satellite and from ERA5 reanalysis have been compared to direct high quality measurements performed over a complete annual cycle at the ENEA oceanographic observatory, near the island of Lampedusa in the Central Mediterranean Sea. Our analysis reveals that satellite derived products overestimate in situ direct observations of the downwelling short-wave (bias of 6.1 W/m2) and longwave (bias of 6.6 W/m2) irradiances. ERA5 reanalysis data show a negligible positive bias (+1.0 W/m2) for the shortwave irradiance and a large negative bias (−17 W/m2) for the longwave irradiance with respect to in situ observations. ERA5 meteorological variables, which are needed to calculate the air–sea heat flux using bulk formulae, have been compared with in situ measurements made at the oceanographic observatory. The two meteorological datasets show a very good agreement, with some underestimate of the wind speed by ERA5 for high wind conditions. We investigated the impact of different determinations of heat fluxes on the near surface sea temperature (1 m depth), as determined by calculations with a one-dimensional numerical model, the General Ocean Turbulence Model (GOTM). The sensitivity of the model to the different forcing was measured in terms of differences with respect to in situ temperature measurements made during the period under investigation. All simulations reproduced the true seasonal cycle and all high frequency variabilities. The best results on the overall seasonal cycle were obtained when using meteorological variables in the bulk formulae formulations used by the model itself. The derived overall annual net heat flux values were between +1.6 and 40.4 W/m2, depending on the used dataset. The large variability obtained with different datasets suggests that current determinations of the heat flux components and, in particular, of the longwave irradiance, need to be improved. The ENEA oceanographic observatory provides a complete, long-term, high resolution time series of high quality in situ observations. In the future, more similar sites worldwide will be needed for model and satellite validations and to improve the determination of the air–sea exchange and the understanding of related processes.


2016 ◽  
Vol 675 ◽  
pp. 69-90 ◽  
Author(s):  
A. Polonia ◽  
L. Torelli ◽  
A. Artoni ◽  
M. Carlini ◽  
C. Faccenna ◽  
...  

Hydrobiologia ◽  
2017 ◽  
Vol 821 (1) ◽  
pp. 151-151 ◽  
Author(s):  
Giacomo Milisenda ◽  
Germana Garofalo ◽  
Samia Fezzani ◽  
Okbi Rjeibi ◽  
Othman Jarboui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document