scholarly journals Editorial: Biodiversity, Connectivity and Ecosystem Function Across the Clarion-Clipperton Zone: A Regional Synthesis for an Area Targeted for Nodule Mining

2021 ◽  
Vol 8 ◽  
Author(s):  
Craig R. Smith ◽  
Malcolm R. Clark ◽  
Erica Goetze ◽  
Adrian G. Glover ◽  
Kerry L. Howell
2019 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Rebecca J. Best ◽  
Julia Kathleen Baum

Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combined surveys of natural fish communities (conducted in July and August, 2016) with morphological trait data to examine relationships between diversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54° N 130° W). We employed both taxonomic and functional trait measures of diversity to investigate if ecosystem function is driven by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we found that fish community biomass is maximized when taxonomic richness and functional evenness is low, and in communities dominated by species with particular trait values – those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.


2019 ◽  
Vol 37 (2) ◽  
pp. 101-112 ◽  
Author(s):  
Annie-Claude Letendre ◽  
Darwyn S. Coxson ◽  
Katherine J. Stewart

Author(s):  
Christer Brönmark ◽  
Lars-Anders Hansson

If biological interactions, such as competition and predation, have any effect on population dynamics, or if abiotic factors alone determine which organisms, how many of them do we see in a specific ecosystem, was for long a controversial question. This chapter aims at providing the basis for the understanding of biological interactions, as well as showing ample examples of how important those interactions are in shaping both population dynamics and ecosystem function of natural systems. In addition to the many examples, the reader is introduced to the history and the theoretical basis for biological interactions.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Ecosystems are assemblages of organisms interacting with one another and their environment (Chapter 1). Key to the functioning of ecosystems is the flow of energy, carbon, mineral nutrients, and water in these systems. The numerous processes involved are chiefly driven by climate, soil, and fire (Chapter 2). In cases where the key drivers are the same in different areas, then ecosystems should converge in their structure and function, which has been a motivation for comparing across mediterranean-type climate (MTC) regions. Convergence of MTC regions has been evaluated, but such comparisons at the ecosystem level are challenging because ecosystems are complex and dynamic entities. Here we review carbon, nutrient, and water dynamics of mediterranean-type ecosystems in the context of ecosystem function. As nutrients in soils are low in some MTC regions, we review how this has led to unique adaptations to meet this challenge.


Author(s):  
Mark Vellend

This chapter highlights the scale dependence of biodiversity change over time and its consequences for arguments about the instrumental value of biodiversity. While biodiversity is in decline on a global scale, the temporal trends on regional and local scales include cases of biodiversity increase, no change, and decline. Environmental change, anthropogenic or otherwise, causes both local extirpation and colonization of species, and thus turnover in species composition, but not necessarily declines in biodiversity. In some situations, such as plants at the regional scale, human-mediated colonizations have greatly outnumbered extinctions, thus causing a marked increase in species richness. Since the potential influence of biodiversity on ecosystem function and services is mediated to a large degree by local or neighborhood species interactions, these results challenge the generality of the argument that biodiversity loss is putting at risk the ecosystem service benefits people receive from nature.


Sign in / Sign up

Export Citation Format

Share Document